
Fakultät für Informatik
der Technischen Universität München

Diplomarbeit in Informatik

Visualization of large-scale 3D city models
with detailed shadows

Matthias Wagner

Fakultät für Informatik
der Technischen Universität München

Diplomarbeit in Informatik

Visualization of large-scale 3D city
models with detailed shadows

Visualisierung großflächiger 3D
Stadtmodelle mit detaillierten Schatten

Author: Matthias Wagner

Supervisor: Prof. Dr. Rüdiger Westermann

Advisor: M.Sc. Stefan Hertel

Submission Date: June 16th, 2008

I assure the single handed composition of this diploma thesis only supported by
declared resources.

June 16th, 2008

Matthias Wagner

Abstract:

With increasing processing power and bandwidth, large-scale environments are becom-

ing more common in computer applications. Users are able to browse maps of the

whole world or walk through 3D models of cities using their standard web browser.

However, this is not limited to the visualization industry. Entertainment products like

games are shifting towards larger environments, too. Some games are even simulat-

ing whole worlds. However, consumers still expect high-quality display, which can be

harder to achieve for large scenes.

The thesis provides a short introduction to CityGML, which has been chosen as data

source. It then shows how to efficiently render large cities by exploiting spatial co-

herency and occlusion information. Spatial subdivision is carefully used to achieve

this. The thesis also covers how to do this for time dependent scenes, e.g. cities de-

veloping over centuries. Another important requirement for efficient rendering is to

avoid state changes, which can be reduced by batching draw calls based on material.

As sunlight shadows are necessary to display cities realistically, they are considered

an essential part of the thesis. Several methods for rendering dynamic shadows are

presented. Focus is put on shadow maps, which provide a good trade-off between speed

and quality. Several methods for improving shadow map quality are proposed, some

increasing resolution close to the camera and some hiding aliasing by smoothing.

Although shadow maps can be improved significantly, aliasing artifacts usually cannot

be avoided. The thesis therefore presents a hybrid approach of shadow maps and ray

tracing. Ray tracing shadows is quite expensive but offers high quality, while shadow

maps are comparatively cheap but have low quality. Combining both techniques results

in high-quality shadows with much less artifacts at competitive speed. In future, this

approach might even be interesting for real-time applications like games.

Next, an overview of the design of the developed application is given and performance

of the different proposed techniques is compared. Finally, the thesis is concluded by

presenting possible extensions to the application along with a valuation of future pos-

sibilities.

Contents

1 Introduction 1

1.1 City models . 1

1.1.1 Google Earth . 1

1.1.2 CityGML . 2

1.1.3 Use cases . 2

1.2 Viewer requirements . 3

1.2.1 Functional requirements . 3

1.2.2 Performance requirements . 4

1.3 Platform . 4

1.3.1 Operating environment . 4

2 CityGML 5

2.1 Introduction . 5

2.2 CityGML . 5

2.2.1 Themes . 6

2.2.2 Level of detail . 6

2.2.3 Building model . 7

2.2.4 Appearance model . 8

2.3 GML . 9

2.3.1 Geometry model . 9

2.3.2 Triangulation . 10

3 Efficient data structure 11

3.1 Common acceleration structures . 11

3.1.1 Bounding volumes . 12

3.1.2 Bounding volume hierarchies 12

3.1.3 Uniform spatial subdivision . 13

3.1.4 Octree . 14

3.1.5 Binary space-partitioning tree 14

3.2 Kd-tree . 15

3.2.1 Construction algorithm . 17

3.2.2 Common split methods . 17

3.2.3 Surface area heuristic . 18

i

Contents

3.2.4 Time . 21

3.2.5 Splitting objects . 22

4 Rendering 25

4.1 DirectX 10 introduction . 25

4.1.1 Resources and views . 26

4.1.2 Effects and shader model 4 . 26

4.2 Buffer collections . 27

4.3 Appearances model . 27

4.4 Efficient rendering . 28

4.4.1 Draw batches . 29

4.4.2 Merging draw batches . 29

4.5 Rendering the scene graph . 30

4.6 Occlusion culling . 31

4.7 Compressing vertex buffers . 33

4.7.1 Position data . 33

4.7.2 Normal data . 34

4.7.3 Texture coordinate data . 34

4.8 Transparency . 35

5 Shadows 37

5.1 Shadow maps . 38

5.1.1 Self-Shadowing . 39

5.1.2 Aliasing . 41

5.2 Variance shadow maps . 41

5.2.1 Idea . 41

5.2.2 Implementation . 43

5.2.3 Light bleeding . 43

5.3 Image based Gauss smoothing . 44

5.3.1 Gauss image filtering . 46

5.3.2 Using scene information . 46

5.3.3 Conclusion . 47

5.4 Perspective shadow mapping . 47

5.4.1 Perspective shadow maps . 47

5.4.2 Light space perspective shadow maps 49

5.4.3 Extended perspective shadow maps 50

5.5 Cascaded Shadow Maps . 51

5.6 Refining shadow maps using raytracing 53

5.6.1 Finding shadow edges . 54

5.6.2 Applying the refined projected shadow texture 54

6 Ray tracing 57

ii

Contents

6.1 General algorithm . 58

6.2 Fast ray-triangle intersection . 58

6.2.1 Projection method . 59

6.2.2 Precalculating the projection method 60

6.2.3 Cache efficiency . 61

6.3 Performance improvements . 62

6.3.1 Space partitioning . 62

6.3.2 Multithreading . 63

6.3.3 Caching shadow casters . 64

6.3.4 SSE . 64

7 Application design 69

7.1 Packages . 69

7.2 Console . 70

7.3 Application framework . 71

7.3.1 GUI . 72

7.3.2 Textures and effects . 73

7.3.3 Document-view model . 74

7.4 CityGML . 75

7.4.1 Graph construction . 75

7.4.2 XML parsing . 76

7.5 City Viewer . 78

7.5.1 Scene . 79

7.5.2 Views and renderers . 81

7.6 Performance . 84

8 Conclusion and prospects 87

8.1 Caching . 88

8.2 Tiling . 88

8.3 Tuning . 89

8.4 Functionality . 89

8.5 Ray tracing . 90

References v

iii

Contents

iv

Chapter 1

Introduction

Many people have enjoyed browsing maps of landscapes and cities using a web browser.

Internet portals providing those services became very popular, as their maps can be

used for planning trips, calculating distances or finding hotels or interesting locations.

Recently there have been several approaches to extent these services to provide fully

three dimensional models of cities to the user.

In this thesis a viewer for three-dimensional models of cities is presented. For the

course of the thesis the viewer is simply called City Viewer . As focus is put on mod-

ern visualization techniques, basic knowledge about computer graphics and rendering

application programming interfaces (APIs) like DirectX and OpenGL is assumed. The

reader is also expected to know the Extensible Markup Language (XML).

1.1 City models

This section takes a look at common standards that are used for storing city data.

While there are many formats available to store geometry, only those that are well

suited for city data are considered.

1.1.1 Google Earth

Google Earth is a very popular viewer for Google’s own Keyhole Markup Language

(KML), which is based on XML. It doesn’t only support specification of geometry but

also other parameters like view angles or distances. Linking to data on internet servers

is possible, too.

1

Chapter 1 Introduction

KML recently became an Open Geospatial Consortium (OGC) standard. However,

City Viewer currently does not support KML in favor of CityGML, which is also an

OGC standard.

1.1.2 CityGML

CityGML is a standard of the Open Geospatial Consortium. In contrast to other

standards, it focuses on much more than just visualization. CityGML includes seman-

tic information like traffic models or vegetation. Kolbe [Kol07a] reasons that there

is currently a paradigm shift in spatial modeling away from graphic models to well-

defined objects with properties, structures and interrelationships. He states that 3D

city and landscape models are a product family on their own with specific applications.

They fully representate city topography and structures as observed and usually not as

planned. Additionally, they provide approximately homogenous data quality for the

whole model regarding geometry, topology, semantics and appearance.

1.1.3 Use cases

City models may be used for many purposes. They can be used for planning sighting

trips or finding appropriate places to sleep. Or they can serve completely different and

probably unobvious purposes, some of which will be shortly presented here.

Cartography

Usually the user doesn’t only want to look at the outer appearance of objects, but he

is also interested in retrieving semantic information about them. For example, it may

be interesting to know if there are hotels, filling stations or parks along a route. A

viewer tool can then strip away information that is not necessary for the current task,

providing a clear display to the user.

Navigation

If the model provides good semantic information, the user may request tours that

highlight certain aspects like famous sightings or interesting historic locations. This

tour can then be created (semi-)automatically by a tool.

2

1.2 Viewer requirements

Simulation

Authorities may use the model to simulate natural catastrophes like floods to take

precautions. Of course, this may also be interesting to possible buyers of estates.

This leads to another related issue: the user can check lines of sight from a location

to another before making his decision. A particularly interesting application in that

regard is noise simulation. The state of North-Rhine Westphalia in Germany has ex-

tended CityGML to support noise mapping to fulfill the requirements of the European

Commission Environmental Noise Directive [PC02].

1.2 Viewer requirements

In the course of this thesis a viewer for CityGML files shall be developed. Primary

focus is taken on the actual display of 3D cities due to time constraints. Therefore,

applications like simulation or navigation are currently not supported. However, the

design of the viewer application should allow for possible extensions. This section will

explain the most important requirements imposed on the development.

1.2.1 Functional requirements

CityGML support

The system must be able to load CityGML files and display them in 3D. It should

support all basic parts of CityGML including appearance themes.

Picking

The user can pick specific surfaces, building parts, buildings and other city objects.

The viewer then displays information about the picked part in an intuitive way.

Display

Additionally to CityGML appearance theme support, the viewer should provide basic

texturing and coloring based on semantic information.

3

Chapter 1 Introduction

Shadows

Sun shadows are considered an important part of the viewer, therefore good quality

shadows must be provided even for large cities (while staying interactive).

1.2.2 Performance requirements

Display of the city shall be accelerated and improved by using modern techniques.

This involves usage of occlusion culling and state-of-the-art shadow generation. The

target frame-rate is about 25 FPS with medium quality settings and medium sized

cities on current standard hardware (P4 Dual 3GhZ, NVIDIA Geforce 8800 GTS,

2GB RAM).

1.3 Platform

In order to keep the actual viewer application simple while still having access to

modern technologies like DirectX 10, quite strong platform requirements have been

set. However, the source code must be organized modularly, so that porting the viewer

to other platforms is eased.

1.3.1 Operating environment

The viewer will use DirectX 10 for displaying the city to the user. This implies

Microsoft Windows Vista as target platform, along with a DirectX 10 compatible

graphics card. However, modules of the application that don’t have to do with actual

display will be developed using platform independent technologies.

4

Chapter 2

CityGML

According to Kolbe [Kol07b] CityGML is a common information model for representing

3D urban city objects. It specifies the classes and relations for topographic objects

in cities. Those classes do not only contain geometry and appearance information

but also semantic and topological properties, therefore allowing for a widespread use

of the CityGML model. CityGML files, an extension of GML files which are stored

using XML, are used as data source for City Viewer . CityGML stores a hierarchy

of buildings and city objects. The objects themselves store their associated geometry

data using GML, while their appearance, including texture coordinates, is specified

using CityGML’s appearance model. The version of CityGML used for this thesis is

0.4.0, which is an application schema for GML 3.1.1.

2.1 Introduction

While many formats are available to store geometry of a city model, there has been a

lack of formats for storing semantic and topological data of those cities. CityGML tries

to satisfy the need of applications other than visualization for this data. It is developed

by members of the Special Interest Group 3D of the initiative Geodate Infrastructure

North-Rhine Westphalia. As this thesis is mainly about visualization of CityGML

models, this introduction focuses on the visualization specifics of CityGML.

2.2 CityGML

CityGML (and GML) defines classes and their relations to each other, therefore the

Unified Modelling Language (UML) is used to specify class models. UML class models

5

Chapter 2 CityGML

also lend themselves nicely for implementation. The specification of CityGML [GKC07]

and GML [CDL+07] includes both XML schemata and UML models.

2.2.1 Themes

CityGML has a widespread theme model, reaching from terrain reliefs to detailed

building models. Figure 2.1 gives an overview of some parts of the CityGML model.

The CityGML specification [GKC07] includes more details about all models included

in CityGML.

Figure 2.1: Excerpt of CityGML themes

The abstract base class of almost all CityGML classes is CityObject. It holds cre-

ation and termination dates of the model along with an arbitrary amount of string,

integer, double, date and URI attributes. Each of those attributes is a pair of name

and value and therefore allows for easy and minimal invasive extension of CityGML

objects. In the context of this thesis, the string attributes “constructionDate” and

“destructionDate” are interpreted in order to include time information.

The following sections will give a slightly more detailed view on chosen models of

CityGML. The specification [GKC07] includes full details on each model.

2.2.2 Level of detail

CityGML provides support for five levels of detail (LOD0 - LOD4). At higher LODs,

more data is available. For example, in LOD4 rooms may have furniture objects,

while in LOD3 room furniture are not available. While this LOD model is nice for

choosing a general LOD when viewing a city, it differs greatly from the LOD models

usually used in computer graphics. A common LOD model used in computer graphics

contains the same geometry in differing detail. That way, the LOD can gradually be

changed depending on distance to the camera. The CityGML LOD model instead

6

2.2 CityGML

removes whole geometry objects in lower detail levels. As this would clearly be visible

while exploring the city, City Viewer currently only displays one level of detail at

once. If memory issues arise, City Viewer ’s design supports adding dynamic LOD

functionality.

2.2.3 Building model

Figure 2.2: Excerpt of CityGML building model

The CityGML building model is probably the most interesting for the development

of City Viewer . Parts of the building model are shown in figure 2.2. According to

the class model, a building may consist of several building parts, which themselves

may recursively contain building parts. This allows to model huge buildings which

are composed of building parts that have different characteristics, like story count or

construction dates. Depending on the level of detail (LOD), only certain parts of the

class model apply.

The actual building model is much more detailed. For example, there are several

subclasses of BoundarySurface, like RoofSurface or WallSurface, and each of these

surfaces may contain doors and windows. For higher levels of detail buildings and

rooms may contain installations and furniture. Additionally, doors and buildings may

reference several Address objects, which can be shared like most GML objects, meaning

more than one door can be connected to an address.

7

Chapter 2 CityGML

The different BoundarySurface types allow viewing tools to decide on coloring or

texturing of objects, if no appearance information is available for the surface. City

Viewer takes use of this, as most example datasets available were modeled without

appearance information.

2.2.4 Appearance model

Figure 2.3: Excerpt of CityGML appearance model

CityGML provides an advanced appearance model, including several possible display

themes for the same city model. These themes specify the current look of the model.

For example, one theme could be “winter” and another one “spring”. However, themes

are not limited to the different times of the year, but can also be used to display other

information like heat.

Applying display themes to surfaces

City objects (and the city model itself) can contain appearances for different themes.

Each of those appearances holds several SurfaceData objects, which can be materials

or textures. These are applied to the actual geometry surfaces. The exact way of doing

this depends on the type of SurfaceData object and is explained below. Generally,

they are linked to one or more surfaces. This means that the surface itself does not

know anything about the way it should be displayed!

Materials Materials hold general surface information like shininess, transparency,

or specular and diffuse color. A material also contains a boolean flag whether surfaces

with this material shall be smoothed. Smoothed materials use vertex normals, while

8

2.3 GML

other materials use face normals. The first should be used for curved surfaces, while

the latter is important to generate properly shaded walls with visible edges.

Each material links to a list of surfaces it is applied to. Each surface usually should

be linked to by at most one material of each theme. If more materials of the same

theme link to a surface, it is up to the application to choose which one to use.

Textures There are many ways to specify textures for surfaces in CityGML. How-

ever, each texture class is derived from AbstractTexture, which contains generic infor-

mation like texture image or wrap mode. One texture class is GeoreferencedTexture,

which uses textures that are aligned to a certain world reference point. The other

texture class if ParameterizedTexture, the type of texture most commonly used in

graphics applications. Parameterized textures use texture coordinates for each vertex

of a surface. Thus they are set for each target surface independently. Each surface

can either receive texture coordinates by multiplying the world position of the vertices

with a worldToTexture matrix, or directly using a TexCoordList. Setting texture coor-

dinates directly uses the XML linking feature, similarly to linking to the surface. As is

explained in the next section, GML specifies polygons through inner and outer rings.

Therefore each vertex of each ring contained in the surface must receive texture coordi-

nates. This is achieved by two lists of the same size, one being the textureCoordinates

list and the other being the appropriate ring list1. The order of the elements in these

lists is therefore important, as each ring must be mapped to a texture coordinates

list.

2.3 GML

The Geography Markup Language (GML) is a XML grammar used to model, transport

and store geographic information [CDL+07]. It provides support for coordinate ref-

erence systems, geometry, topology, time, units of measure and storage of geographic

information. This section focuses on explaining the geometry model.

2.3.1 Geometry model

The GML geometry model is a hierarchical structure. Geometries may not only be

specified using vertices and indices like in most model formats. Instead, the model is

1Actually, the textureCoordinates list is twice the size of the ring list, as each texture coor-
dinate consists of two components

9

Chapter 2 CityGML

Figure 2.4: Excerpt of CityGML specific GML geometry model

based very much on aggregation and the composite pattern.

Most primitive types are modeled using aggregation. Solids are specified by exactly one

exterior surface and optionally several interior surfaces. The surface itself is described

by exactly one exterior ring and, depending on the type of surface, optionally several

interior rings.

A composite pattern is used for modeling complex solids, surfaces and curves. This

allows to reproduce real world primitives more closely, as those usually can be seen as

composition, too.

2.3.2 Triangulation

As explained before, geometry in GML usually is not given as triangle lists. To render

the data using a GPU, all surfaces must be triangulated. City Viewer does this by

using the “OpenGL Graphics System Utility Library”, which offers polygon tessellation

including support for interior contours.

10

Chapter 3

Efficient data structure

This chapter discusses the way City Viewer handles geometry data. The geometry

data GML provides is not directly usable for rendering. Even after triangulating the

data and uploading it to the graphics card, simply iterating through all CityGML

objects along with their attached GML geometries is inefficient. While each GML

surface usually just holds a few vertices, there is a very large number of surfaces. This

requires many small draw calls, each with possibly different rendering effects, which is

prohibitive for achieving interactive frame rates.

Sorting the surfaces by effect type and drawing all surfaces of one effect type at once

can be done to dramatically improve rendering speed. However, as City Viewer shall

handle very large environments with high detail, this can still be extremely slow due

to completely ignoring line of sight. By using an intelligent data structure several

technologies can be employed, including occlusion or frustum culling, which can im-

prove rendering performance drastically if large parts of the scene are currently not

visible.

Therefore, several well known and efficient data structures for storing geometry data

are presented in this chapter. The chapter also handles the issue of storing time

dependent information. This is important, as City Viewer may be used to show the

development of a city over several centuries. If the city changes shape rapidly several

times, this can result in a high amount of data to be handled.

3.1 Common acceleration structures

This section introduces some common acceleration structures frequently used in com-

puter graphics. Many of these techniques originally are targeted at improving ray

11

Chapter 3 Efficient data structure

tracing performance. However, these structures usually map well to rasterization al-

gorithms and occlusion culling techniques.

3.1.1 Bounding volumes

A complex object with thousands of triangles can be approximated by much simpler

geometric primitives. For example, a whole building containing furnitures, doors,

windows and other details can be approximated by a bounding box. Instead of testing

each triangle of the building for an intersection or visibility in the view frustum, the

bounding volume can be tested first. This is usually much cheaper than testing the

real geometry. Like most other viewing tools, City Viewer therefore supports this

technique using bounding boxes1, as it provides a significant speedup for negligible

implementation and memory effort.

Kay and Kajiya [KK86] suggest another type of bounding volume, which is a convex

polyhedron consisting of the intersection of pairs of parallel planes. They call each of

the plane pairs slab. Although these slabs allow a much tighter bounding volume, they

have not been considered for City Viewer , as simple bounding boxes provide many

advantages for implementation of both the ray tracer and the GPU renderer.

3.1.2 Bounding volume hierarchies

The bounding volumes explained before can be stored in nested hierarchies connected

by nodes. Each node contains its bounding volume and several child nodes, except

leaf nodes, which contain only their associated object. If a parent node is not affected

by a ray intersection or is not inside the view frustum, the child nodes don’t have to

be considered. An example of 2D bounding volume hierarchies is given in figure 3.1.

Foley et al. [FvDFH96e] consider several methods for creating the hierarchies. While

it seems intuitive to create the hierarchy manually during modeling, those hierarchies

usually aim at controlling the object, instead of focusing on coherency. Goldsmith

and Salmon [GS87] therefore developed a method to create the hierarchies automati-

cally. This method already is quite similar to the surface area heuristic that will be

introduced later.

Generally, bounding volume hierarchies are a bottom-up approach to object organiza-

1City Viewer uses bounding hyperrectangles, a generalization of bounding boxes or rectangles

12

3.1 Common acceleration structures

Figure 3.1: A simple 2D example of hierarchical bounding volumes. Children of bound-
ing volumes may intersect.

tion, while the following techniques will use top-down logic. The bottom-up approach

implies that child objects are guaranteed to be fully inside the parent bounding vol-

ume. However, objects may overlap a bounding volume without being a child of this

volume.

3.1.3 Uniform spatial subdivision

This method divides the scene space into equally axis-aligned boxes. Each of this boxes

contains a list of objects stored in it. In contrast to bounding volume hierarchies, an

object stored in a box may not be fully inside this box. Subsequently, an object may

be referenced by several boxes.

Figure 3.2: 2D uniform spatial subdivision

To find the nearest ray intersection, Foley et al. [FvDFH96e] suggest to use a modifi-

cation of a line-drawing algorithm to find the partitions through which the ray passes.

After testing all objects inside a box, traversal can be stopped if an intersection has

been found2.
2This is further complicated by the fact that an object may be part of several boxes. If the

13

Chapter 3 Efficient data structure

3.1.4 Octree

Another option is to use an adaptive spatial subdivision method called octree. Ac-

cording to Foley et al. [FvDFH96d] octrees are based on the divide-and-conquer power

of binary subdivision. They have been derived from quadtrees that are used for 2-

dimensional data. An example of an quadtree is given in figure 3.3. An octree is a

tree that either has no children or eight children. A parent node is subdivided in eight

nodes of equal size3 until a certain threshold is met, like a specific count of objects or

polygons. Usually the node boxes are axis aligned.

Figure 3.3: A quadtree subdividing 2D space

Octrees are used quite frequently for storing computer graphics data. They can be

used well for frustum culling and ray tracing. It is possible to efficiently find a node’s

neighbors, which can be used for fast ray tracing.

3.1.5 Binary space-partitioning tree

Foley et al. [FvDFH96c] claim that a binary space-partitioning (BSP) tree fits very

well to calculate visibility relationships of polygons. While the viewpoint can be chosen

freely during runtime, the polygons themselves must be static. The latter is caused

by the expensive preprocessing step necessary.

intersection is not inside the current box, traversal cannot be stopped, as the intersection
may be far away.

3Variants of the octree allow different sizes for the nodes

14

3.2 Kd-tree

A BSP tree is a binary tree that subdivides space by the use of hyperplanes. Each

inner node contains a hyperplane that subdivides the space of the node into two half

spaces. This is based on the work of Schumacker [SBGS69], who explains that a scene

can be viewed as composed of clusters. In this case, the objects on one side of the

plane form one cluster. This subdivision of space can be continued until either only

one object is left or until a specific threshold is met.

In practice, the objects sorted into a BSP tree often are polygons. When building the

tree, usually one of the polygons is selected as splitting plane. However, this introduces

the problem of polygons intersecting this splitting plane, which therefore cannot be

uniquely assigned a half space. This is usually solved by splitting the polygon into

several polygons that do not intersect the splitting plane. Although this increases

polygon count, it simplifies many of the algorithms that use the resulting BSP tree.

To avoid massive polygon splitting, a polygon that causes the least amount of polygon

splits should be chosen as splitting plane, while still providing a reasonably balanced

tree. This is expensive to compute, but Foley et al. reason that a good approximation

can be done by just testing a few triangles as split planes and choosing the best one.

The BSP tree can be used for a lot of algorithms, including back-to-front or front-to-

back rendering4, collision detection or ray tracing acceleration.

3.2 Kd-tree

A kd-tree5 is a BSP tree with axis aligned splitting planes. This results in every node

to be surrounded by a hyperrectangle. For 3d-trees the space occupied by the hy-

perrectangle (in this case a box) is also called voxel. Bentley [Ben75] first introduced

this data structure. Due to the large application range, there are several variations

of kd-trees. Some store one object defining the splitting plane at inner nodes6, while

others only store the splitting dimension and splitting value at each inner node (im-

plying that leaves store all objects)7. When working with points as objects, the points

usually are stored directly in inner nodes.

In computer graphics kd-trees usually store primitives like triangles (or objects consist-

ing of primitives) instead of points. The primary computer graphics usage of kd-trees

is space subdivision, as opposed to other usages like binary search presented in the

original Bentley paper [Ben75]. Focus is put on finding (and culling) empty space in

4The back-to-front rendering can be used for a painter’s algorithm without need for a z-buffer
5Short for k-dimensional tree
6Also called homogeneous kd-tree
7Known as non-homogeneous kd-tree or kd-trie

15

Chapter 3 Efficient data structure

a scene, therefore reducing the amount of work necessary when tracing rays or raster-

izing the scene. Culling empty space is important not only for a ray tracer8, but also

for doing efficient occlusion culling as presented later.

Using a kd-tree as data structure for City Viewer has been considered the best choice

because of the following reasons:

Performance A hierarchical approach to space subdivision has significant performance

advantages compared to uniform space subdivision

Flexibility As the name says, a kd-tree supports an arbitrary amount of dimensions

without significant penalty for additional dimensions9. This is important due

to City Viewer supporting 4-dimensional data for time dependency

Well-known Many ongoing papers and technologies use kd-trees10

Simplicity As the splitting planes are axis aligned, many algorithms can be vastly

simplified, resulting in much better performance and less implementation issues

A disadvantage of using a kd- or BSP tree is the limitation to static, non-animated

scenes. For City Viewer , this is not a problem, as city data usually does not include

animations11. Additionally, there are approaches to circumvent this limitation:

� Real-time construction of kd-trees is a topic currently being researched [WH06,

HMS06]

� Instead of using one large kd-tree for the whole scene, animated objects are

associated with a local kd-tree. This local kd-tree can be transformed along

with the enclosed object. If the object geometry itself changes, the local kd-tree

can be discarded and rebuilt. Sometimes it may be beneficial to not transform

the tree itself. For example, a ray entering a local kd-tree may be transformed

instead to still enable certain optimizations specific to axis aligned split planes.

Handling dynamic scenes is intensively discussed by Wald[Wal04], but is out of scope

for this thesis. However, City Viewer ’s design allows incorporation of the techniques

Wald suggests without much restructuring work.

This kd-tree implementation works on “objects” instead of handling primitives directly.

8An empty voxel is a cheap voxel to traverse
9This statement is targeted at the costs of the kd-tree itself, not the data contained

10This is also true for Octrees
11Shader effects that may be added later on like water waves usually can be handled like static

geometry

16

3.2 Kd-tree

This has the advantage that issues like splitting can be assigned to the objects. Also,

objects can be of any geometry type, like points, lines, triangles or whole meshes12.

Each object must support several operations like splitting or retrieving the amount

of primitives that will result from a specific split. Also, each object must have an

associated k-dimensional bounding hyperrectangle.

This section focuses on the construction of a kd-tree, as the actual usage of the tree

is covered later on in the chapters 4 and 6.

3.2.1 Construction algorithm

The construction of the kd-tree is quite straightforward. As the whole scene is known

in advance, the kd-tree is given an array of all objects included in the scene. Then a

splitting dimension along with a splitting value is chosen based on all objects. The

actual way of doing this depends on the splitting method the tree uses (splitting in

the middle, splitting by median or using a surface area heuristic). After the split-

ting plane is known, two new arrays of objects are created, one for each side of the

plane. All objects are then assigned to the appropriate side based on their bounding

hyperrectangle. Objects intersecting the splitting plane are split along the plane13.

This algorithm continues recursively until a termination criterion is met. Usual termi-

nation criteria are tree depth, object count or primitive count. Another termination

criterion is provided by examining the surface area heuristic as shown below.

3.2.2 Common split methods

Basically, two decisions have to be made in each recursion step. First, the splitting

dimension must be determined. Second, the split position along this dimension must

be found.

Finding the splitting dimension can be done very naively by just basing it on the

current node’s depth, simply iterating through all dimensions equally. This may split

along dimensions that actually don’t have any extent anymore, therefore wasting a

full traversal step. A better approach is to split along the dimension with largest

extent. This produces more cube-like voxels according to Wald [Wal04], which is good

for efficient ray tracing and occlusion queries. Many implementations of kd-trees that

12In practice, all objects currently used in City Viewer are triangle meshes
13Optionally, each child node may contain a reference to split objects

17

Chapter 3 Efficient data structure

shall primarily be used for binary search use the dimension with highest variance as

splitting dimension.

Choosing the actual splitting value for the given split dimension can be done several

ways, too. A very simple method is to split at the median object regarding the

split dimension. This results in quite balanced trees with about-equal depth of each

leaf. Wald reasons that this is actually not optimal for a ray tracer14. A balanced

tree is good for binary searches with each branch having the same access probability,

resulting in about constant search duration. First, the probability of a ray hitting a

branch depends heavily on the size of a voxel, which itself is dependent of the split

location. But splitting at the median usually creates voxels of different size. Second,

shooting a ray through the tree is comparable to a range search visiting several leaves.

This range search includes frequent up- and down traversal of the tree. To optimize

this range search, the tree should be constructed in a way that reduces the amount of

traversals needed when tracing the ray. In other words, empty space voxels should be

as close to the root as possible.

A better method to choose the splitting value for City Viewer ’s purposes is to use the

center of the current voxel. Together with choosing the split dimension based on extent

this produces quite good results for usage in computer graphics. Some improvements

can be made. For example, the split plane can be shifted towards the closest object’s

bounding box plane if it currently doesn’t intersect any object.

3.2.3 Surface area heuristic

While the splitting techniques presented before do achieve acceptable results, they are

by far not optimal. Wald [Wal04] suggests a heuristic method for predicting the cost

of a split following ideas of Goldsmith and Salmon [GS87], MacDonald and Booth

[MB89, MB90], and Subramanian [Sub90]. A cost prediction function estimates the

cost of a split along a given split plane. The split is then done at the location with

lowest cost. Possible advantages of choosing such a cost estimation function are shown

in figure 3.4

A well researched cost estimation function is the surface area heuristic (SAH), which

has been presented by MacDonald and Booth [MB89, MB90]. This heuristic makes

two assumptions. First, it assumes that rays are equally distributed in space, and

second, it assumes that these rays cannot be blocked by scene objects. This allows

to calculate the probability of a ray intersecting a voxel, given that it intersects the

14The same reasons can be applied to occlusion culling rendering

18

3.2 Kd-tree

Figure 3.4: Left: an inefficient kd-tree built by splitting in the middle and alternating
split dimension. Right: a typical SAH kd-tree which tries to cull empty
space. The right kd-tree is much faster to traverse while approximating the
geometry much better.

voxel’s parent. The probabilities for the left and right voxels VL and VR to be hit

(under the condition that the parent voxel V is hit) can then be calculated using the

following formulae:

P (VL|V) =
SA (VL)
SA (V)

(3.1)

P (VR|V) =
SA (VR)
SA (V)

(3.2)

SA (V) is a function that returns the surface area of the given voxel V . The calculation

of the surface area is dependent on the dimension of the kd-tree. For 3-dimensional

trees the surface area can be calculated as follows:

SA (V) = 2 (VwidthVdepth + VwidthVheight + VdepthVheight) (3.3)

Using these probabilities, the cost of a split can be calculated easily:

Costsplit (VL, NL, VR, NR) = Ctraversal+Cintersection (P (VL|V)NL + P (VR|V)NR)

(3.4)

NL and NR specify the primitive count in the left and right subtree15. Two constants

are introduced that allow tuning the heuristic to application specific needs. Ctraversal
specifies the cost of a traversal, and therefore a fixed penalty for splitting a node.

Cintersection represents the cost of a ray triangle intersection. Both constants can be

tuned to change shape and depth of an SAH kd-tree. The cost function can also be

15Optionally, NL and NR could be approximated by counting objects instead of primitives.
This only works acceptably if the primitive count of objects doesn’t differ greatly, which
however happens frequently for deeper trees

19

Chapter 3 Efficient data structure

used as termination criterion. Splitting is stopped once the cost of the cheapest split

found is higher than not splitting the voxel at all. The cost of not splitting the voxel

can simply be calculated as

CostUnsplit (V) = NV Cintersection, (3.5)

where NV obviously is the primitive count of all objects. City Viewer uses the SAH

termination criterion along with a maximum tree depth heuristic to control the tree

shape.

Finding the best split plane

To find the best split plane for a given split dimension, all planes along this dimension

that could possibly be the cheapest must be considered. The possible candidate posi-

tions are given by the vertex coordinates of all objects in the split dimension, as the

cost function is continuous everywhere else [Hav00]16. Once the candidate positions

are known, the count of primitives resulting from each position is calculated. This

is done by iterating over all objects and calculating the resulting primitive count if

splitting at the given position. That way the cheapest split position can be found.

Instead of choosing a split dimension beforehand, this process is repeated for every

dimension to find the cheapest split in all dimensions.

As this calculation is very expensive, the actual implementation applies several ideas

to reduce runtime cost. The split candidates are sorted in the given dimension. This

allows to keep a list of “right” and “left” objects17. Initially all objects are put into

the right list. Iterating through the candidate list, the bounding hyperrectangles of

the right objects are compared to the split positions. Objects that are fully left can

immediately be put into the left list, and objects that are fully right or intersecting

are kept in the right list. Intersecting objects are then asked to return the count of

primitives left and right that will result if they are split at the current candidate. This

algorithm saves a lot of calculations, as the left list does not need to be traversed at

all, while the right list becomes smaller.

A very similar idea can be used to increase performance of primitive calculation of

intersecting objects. Each object sorts its primitives based on the maximum coordinate

16This is only correct as this kd-tree implementation splits objects that intersect voxel bound-
aries, instead of keeping references to the unsplit objects in all intersected voxels. Not
splitting the objects would require adding all intersections of primitive sides with voxel
sides to the candidate list

17Actually no “left” list exists, as only the count of left primitives needs to be stored

20

3.2 Kd-tree

in the given split dimension18. Instead of iterating through all primitives, a binary

search can be done to find the first primitive that intersects the current split value.

Additionally, the left boundary of the search range can be kept from the last request,

as the split candidates are sorted.

3.2.4 Time

An important aspect when choosing the spatial subdivision scheme has been support

for higher dimensions. The requirements for City Viewer include support for time

dependent data. This is not to be confused with animation. Instead, each object may

have a creation and termination date to support visualization of city development over

centuries. This idea lends well to direct incorporation into the kd-tree, especially since

cities usually grow at their boundaries. Therefore, City Viewer does not use a 3d-tree

but a 4d-tree, although the geometry itself is still 3d19. The time dimension is called

t. The term “surface area” is kept in this thesis, despite the voxel sides now being

volumes.

As described above, the kd-tree only accesses the objects but doesn’t directly know

about primitives. This eases the introduction of time as fourth dimension. Basically,

the kd-tree does not differ between dimensions20. All work regarding splitting or

calculating hyperrectangles is delegated to the objects.

The formula for calculating the surface area for 4d voxels is different than the one for

3d voxels:

SA (V) = 2VwidthVheightVdepth + 2VwidthVheightVduration+

2VwidthVdepthVduration + 2VheightVdepthVduration
(3.6)

Remembering that the SAH is based on equally distributed rays, this formula doesn’t

seem to be optimal. When displaying a scene on the screen, only one point in time

is displayed, no matter if using ray tracing or rasterization. Figure 3.5 visualizes the

problem.

The formula is therefore modified to only include the surface area affected by rays

18It is sufficient to keep a sorted list of structures containing the min/max values of each
primitive along the current dimension

19Real 4d geometry has been discussed shortly, but this introduces a bunch of memory and
visualization problems if done really flexibly. However, City Viewer ’s architecture can
easily be extended to support key-frame animations which can be compared to restricted
4d geometry

20Except for calculating the surface area, as seen later

21

Chapter 3 Efficient data structure

y

t

x

v

v

v

x

t

y

Figure 3.5: Visualization of a 4d-tree ignoring z dimension. Of all visible areas only
the shaded areas may be used for SAH, as only ray directions v are valid
that can be expressed by v = (vx, vy, vz, 0)T . This must be true because
only one point in time is displayed on the screen at once.

with constant time coordinate:

SA (V) = 2VwidthVheightVduration + 2VwidthVdepthVduration+

2VheightVdepthVduration
(3.7)

This excludes the two sides of the voxel hyperrectangle that would only be intersected

by rays with time slope.

3.2.5 Splitting objects

As explained before, objects are responsible for splitting. If an object is split, it returns

references to its “children”, which are then used by the kd-tree21. The actual split

algorithm depends on the split dimension.

Time splits are easy to implement, as no geometrical splits must be done. Two objects

are returned with identical geometry. To save memory, the object geometry is not

copied. Instead the child objects store a pointer to the original geometry object22.

Geometrical splits23 are harder to do. One approach would be to partition the primi-

tives into left and right primitives and to copy intersecting primitives to both children.

21In practice this is slightly more complicated, as the geometry objects are owned by entities
which reference to them. The geometry object therefore also notifies the owning entity of
this change

22If a geometrical split follows, the geometry is copied from the original location, as both child
objects may be subject to different geometrical splits

23Meaning splits at a x, y or z split value

22

3.2 Kd-tree

The advantage of this method is that the actual primitive count may be kept low if

the primitives are stored by reference. However, City Viewer does not store primitives

by reference, as each geometry object is considered as independent. A global database

of primitives would solve this problem, though. But this method has a serious dis-

advantage: it either means rendering primitives multiple times due to belonging to

different objects, or using a flag for each primitive that specifies whether the primi-

tive has already been rendered this frame. This is very hard to combine with other

acceleration structures used by the renderer24. It is therefore improbable that the

saved primitive draw calls outperform the second method of splitting objects, which

has been implemented for City Viewer . This method splits primitives that intersect

the split plane into several smaller primitives. As City Viewer just supports triangle

primitives currently, only this split method is explained.

Splitting triangles along a plane

The algorithm employed to split triangles has been presented by Shirley et al [Shi05].

When splitting a triangle with vertices a, b, c along a plane it intersects, two vertices

are on one side and one vertex is on the other side25. The algorithm first makes sure

that vertex c is on one side of the plane and a and b on the other side. This is done

by swapping the vertices26. That way, only two cases have to be considered: c being

on the left or right side of the plane. Then the two intersection points A and B can

be computed using linear algebra by plugging the parametric line equations of ac and

bc into the plane equation. Finally, the resulting triangles 4abA, 4bBA and 4ABc
can be added to the appropriate objects.

24Combination with the ray tracer is easier to do, as explained later. A solution fitting both
needs is to change splitting methods once reaching the last rendering depth layer

25Exactly one vertex actually may lie directly on the plane. This vertex is considered to be
on the side opposite to c (after swapping)

26Pairs of swaps need to be done to avoid normal flipping

23

Chapter 3 Efficient data structure

24

Chapter 4

Rendering

This chapter explains several algorithms and technologies that are used by City Viewer

to present the city scene on the screen. It assumes basic knowledge of computer

graphics including the rendering pipeline, GPU programming and graphics APIs like

OpenGL or DirectX. A very good API-independent reference for learning the basics

of computer graphics is provided by the book “Computer Graphics: Principle and

Practice” by Foley, van Dam, Feiner and Hughes [FvDFH96a].

After a short introduction to DirectX 10, City Viewer ’s appearances model is pre-

sented. Then the way City Viewer stores geometry on the GPU is discussed, followed

by the algorithms used to display the scene efficiently using a kd-tree.

4.1 DirectX 10 introduction

With the shipping of Microsoft Windows Vista, DirectX 10 [Mic08] became available to

developers. While DirectInput and DirectSound have not received upgrades, Direct3D

10 has been introduced with significant changes. The most interesting change is the

removal of the whole fixed function pipeline, implying movement of some functionality

to the shader pipeline. Device capabilities bits have been removed to allow cleaner code

development1, which means support of most functionality of Direct3D 10 is guaranteed

for every Direct3D 10 capable graphics card.

For performance reasons, Direct3D 10 does strict object validation when creating

objects. Previous versions of Direct3D made many of these validation tests during the

Draw calls. To obtain optimal performance, it’s now even more important to reuse

objects instead of recreating them frequently.

1Some tests may still be necessary, for example, hardware may not support all texture formats

25

Chapter 4 Rendering

4.1.1 Resources and views

In Direct3D 10, all resources are now derived from a generic buffer type. Instead of

binding these resources directly as render/depth target or shader resource, views are

bound. Direct3D 10 introduced the concept of views to allow access to resources from

different stages of the pipeline. This includes the option to interpret data differently.

This is very useful for creating geometry on the GPU: indices and vertices can be

rendered directly to their appropriate buffers. In Direct3D 9 a vertex shader texture

fetch using shader model 3 would be required, which usually is much slower. The

view concept also allows to reinterpret data in another format, as long as the bit and

component count per element is the same.

4.1.2 Effects and shader model 4

The effect model has received some changes in Direct3D 10. State values have been

encapsulated in chunks to allow both easier distinction of states along with perfor-

mance increase due to limited data transfers to the GPU. Usually the state blocks

for each rendering pass are set in the effect file, but the application may also directly

change state blocks.

All shaders used by Direct3D 10 must be specified in HLSL. The graphics programmer

may no longer use assembler shaders, although the resulting assembler shader code

can be debugged during runtime using tools like PIX.

The most interesting feature is shader model 4, which has been completely redesigned.

A good introduction to this model is given by the DirectX SDK[Mic08]. Most limita-

tions of earlier shader models have been removed. For example, shader model 4 allows

unlimited constants and instructions (obviously capped by hardware limitations). This

new shader model uses a common shader core which is accessible by all shader stages,

along with additional unique functionality for each shader stage.

There are now three shader stages: the well known vertex and pixel shader stages have

been extended by the new geometry shader stage. The (fully optional) geometry shader

stage sits between the vertex and pixel shader stage. The input for the geometry shader

is a whole primitive including all information available for a vertex, and if existing,

even all information of adjacent vertices. The shader outputs a vertex stream2 that is

interpreted as primitive strip. A new strip can be started by calling the RestartStrip

2The type of stream must be specified for each shader. Valid streams are point, line and
triangle streams

26

4.2 Buffer collections

method of the stream. The count of vertices emitted that way can vary for each

geometry shader call3. The output of the geometry shader may be passed to the pixel

shader stage or to the stream output stage, which stores the generated primitives

(expanded to primitive lists) in a vertex buffer.

4.2 Buffer collections

Each geometry object may have different information available for each vertex. Some

objects only offer position data, while others also offer normals or texture coordinates.

This information can either be stored in a single buffer or be distributed over sev-

eral buffers. Also, City Viewer uses indexed rendering calls, which requires an index

buffer.

To avoid code redundancy, City Viewer stores data in buffer collections. Each buffer

collection holds one index buffer and one or several vertex buffers along with the

necessary input layout4. By default all vertex data is stored in one vertex buffer. The

associated buffers and input layout are bound using a single apply call, although flags

are available to exclude buffers or the input layout.

The buffer collection is filled with vertices and indices in several calls. Once all vertices

and indices have been added, the appropiate DirectX objects can be created. Gener-

ating the input layout requires a shader input signature for validation. This has been

achieved by signature shaders, which contain no actual shading code.

4.3 Appearances model

City Viewer uses the concept of appearances to keep the main rendering code clean.

These appearances should not be confused with CityGML appearances. Each geom-

etry object is associated with an appearance that specifies how the object should be

drawn. Each appearance is linked to a set of effect techniques for different purposes

(for example rendering with and without using a shadow map). Abstracting the ac-

tual object rendering code with these appearances also allows for easy swapping of

techniques. This can be done two ways:

� A single object may be linked to another appearance to change the style of

3A maximum number of vertices generated must be specified
4Direct3D 10 input layouts replace the vertex declarations used in earlier Direct3D versions

27

Chapter 4 Rendering

the object. For example, selecting an object may cause a special selection-

appearance to be used5. This appearance can then apply special effects to

highlight the object, like changing color or even shape of the object using other

shaders.

� Instead an appearance instance (which is referenced by many objects) may be

modified. For example, all objects drawn using a water appearance shall be

made invisible or drawn without any transparency.

Each appearance instance may reference its own effect file. In practice, the effect file

is specified for each class in City Viewer .

Not each draw call is done using an appearance. For example, rendering to a shadow

map is specified in a default effect file, which is used for all object types.

4.4 Efficient rendering

In order to fully exploit the performance of current graphics hardware, certain require-

ments should be met:

� Geometry data should be uploaded to the graphics card using vertex and index

buffers.

Vertex sharing Vertex sharing between primitives should be employed to reduce

vertex shader costs

Coherency Coherency of indexed vertices is important, as the GPU processes

the whole range from the first vertex being indexed to the last one for each

draw call. A draw call indexing the first and last vertices in a vertex buffer

of N vertices results in N vertices being transformed by the vertex shader,

even if only a single triangle is rendered. A vertex sharing algorithm must

consider this to avoid inefficient vertex sharing.

� Draw calls should be concatenated, if possible. Rendering N triangles at once

is much faster than N times rendering one triangle.

� State changes should be kept to a minimum. Objects should be grouped by

the state necessary for rendering them to avoid frequent state changes. This is

5City Viewer currently doesn’t do this yet, but instead just changes the diffuse color of the
object

28

4.4 Efficient rendering

especially true for changing shader, texture or input stream states.

These thoughts led to the introduction of draw batches, which will be covered below.

4.4.1 Draw batches

Each draw batch is composed of several geometry objects and rendered with a single

draw call6. This requires that each draw batch has a single appearance, texture and

material7. Also, all geometry objects inside a draw batch must have the same creation

and destruction time. Additionally, each draw batch must be fully contained in a leaf

kd-node to support occlusion culling as described later.

Generating draw batches

The most straightforward way is to create one draw batch for each geometry object

after building the kd-tree. This automatically satisfies the constraint of a draw batch

not overlapping kd-nodes, as the geometry objects have been split to fit kd-tree leaves.

The draw batch is created based on material, texture and appearance information of

the object. The vertices and indices of the object are added to the appropriate buffer

collection8, while storing the first index and index count in the draw batch.

4.4.2 Merging draw batches

After creating the draw batches, each one represents a single geometry object. De-

pending on the input data, this may be a single wall (or part of a wall because of

kd-tree splitting). However, there may be several other wall objects in the same kd-

tree node. Those may have the same appearance, texture and material along with

the same creation and destruction time, which means their associated draw batches

can be merged to a single draw batch that is responsible for rendering all of these

geometries.

Quick merging can be done by sorting all batches of a kd-tree leaf by their respective

properties like appearance and material. Then all batches that can be merged are

6An exception are selected objects. If a draw batch contains objects that are selected, each
object is rendered on its own. The same applies to changing the appearance of single
objects, which would either require recreation of the draw batch or single object rendering.

7Additional per-vertex data or texture atlases could be used to relax these constraints
8There are several buffer collections, as only some geometry objects have texture coordinates

29

Chapter 4 Rendering

next to each other. Each draw batch can be merged with all draw batches following

that are compatible. Merging is simply done by considering two batches that are

compatible. They differ only in the indices they are referencing9. As one draw call

shall render both objects, the indices in the associated buffer collection have to be

reordered such that both geometries’ indices follow each other. While this is trivial,

it has to be considered that the index list is global, meaning some draw batches now

point to wrong indices. Therefore the start indices of all draw batches affected are

fixed. As a linear search through all batches would be quite slow, a STL map mapping

from start index to draw batch is used10.

4.5 Rendering the scene graph

Once the draw batches have been created, rendering the kd-tree is straightforward. A

simple method would be to traverse the tree front-to-back, resulting in many fragments

of objects far away to be discarded by the depth test, which would otherwise be drawn

(and overwritten afterward). Additionally, the traversal algorithm may make use

of frustum culling as described by Clark [Cla76]. The basic idea is to make use of

the hierarchical structure which is given by the kd-tree. As each child node is fully

contained in its parent node, hierarchical culling can be performed. Traversal of a

child node is neglected if its bounding hyperrectangle11 is fully outside of the view

frustum.

Frustum culling improves performance significantly if a large part of the scene is not in

the current view frustum. However, very large parts of the scene can be inside the view

frustum but still be invisible, because of other objects occluding them. The camera

might be right before a wall separating the scene, but still the whole area behind the

wall must be drawn. While many fragments will be discarded by the depth test, this

is still a large waste of GPU processing time. The next section therefore introduces

an algorithm that eliminates processing of the area behind the wall.

9They also differ in the geometry object list, but the list of the second batch is simply inserted
at the end of the first batch

10Actually only fixing batches of the current node would be necessary because of the order the
batches are created. But multithreading for creating the batches will break this, as well as
some other algorithms for building the batches. The map ensures robustness in that case

11Clark suggests spheres as bounding volume

30

4.6 Occlusion culling

4.6 Occlusion culling

In order to detect such occlusion, current graphics hardware usually supports occlusion

queries. Occlusion queries return the count of pixels that passed the depth test. After

a query is started, primitives are drawn. The query is ended after all primitives of

interest have been drawn. Then the query results are sent to the CPU, which can use

this information in its decisions for further action. While the query itself is basically

done for free12, latency is introduced for transferring the result to the CPU.

As the bounding volume of an object by definition fully contains the object13, it is

possible to render the bounding volume using an occlusion query with disabled depth

and color writes. Only if at least one pixel passes the depth test, the object included

may be visible. This information is used for deciding whether to render the actual

object. For high-polygon objects this can improve speed significantly.

This idea can also be applied to hierarchical structures like kd-trees. Using front-to-

back rendering, a query is issued for every child node’s bounding box14. If the node’s

bounding box is visible, the node is traversed, otherwise it is culled. This approach

works quite well, as long as a large part of the scene is invisible.

As Bittner et al. [BWPP04] point out, waiting for the query result due to latency

(along with the overhead of queries and box rendering) can actually decrease per-

formance compared to frustum culling approaches, if a large part of the scene in the

frustum is visible. They therefore suggest using a method called Coherent Hierarchical

Culling, which is based on the following concepts:

Temporal coherency It is assumed that a node that has been visible in the last frame

is still visible. For interior nodes this results in immediate traversal without

issuing a query. For leafs, a query of the bounding box is started15, while the

geometry is rendered directly after the query without waiting for the query result

Interleaving Instead of waiting for the result of a query after issuing it, all queries are

stored in a queue. Before traversing further nodes, the first query in the queue

12Not including the rendering cost, which usually is low, as queries are mainly used for low-
poly objects like bounding volumes. Additionally, when rendering bounding volumes for
queries no expensive shading and no writes to the depth and color buffer are used

13Modification by vertex shaders must be considered
14This section refers to boxes instead of hyperrectangles, as the graphics card does not know

about time dimension
15A query on the geometry can be done, too. This however may mean that a leaf is classified

invisible in frame N testing the geometry itself, while it is classified visible in frame N + 1
due to testing the bounding box. Together with methods like focusing the shadow map on
the visible scene, this can result in flickering shadows even while not moving the camera

31

Chapter 4 Rendering

is checked. If the results are ready and the node is visible, the corresponding

node can be traversed or the associated geometry rendered

Each node contains information about the visibility status of the last frame it has been

checked. If a node has not been checked in the last frame, it is considered invisible,

otherwise a visibility flag determines visibility of the last frame. Storing visibility like

that is efficient and easy to handle. Neither does the algorithm have to clear all node

flags, nor does it have to keep a visible or invisible node list.

When examining a query result, visible nodes mark all parent nodes as visible, while

invisible nodes don’t. The first results in a “pull-down” of the queried kd-tree layer,

while the second results in a “pull-up”. This has been visualized in figure 4.1.

V

V V

V I V V

I V

V

V

V V

V V

I I V I

I I

Pull up

Pull down

I

Figure 4.1: Occlusion queried layers of a kd-tree in frame N − 1 (left) and N (right).
Figure idea taken from [BWPP04]

In an optimal case, interleaving can fully hide the latency of queries according to

Bittner et al. However, it may happen that no queries have finished, yet no nodes are

anymore available for direct traversal. If that happens, the CPU needs to wait for the

results of the first query in the queue, introducing a CPU stall (possibly followed by

GPU starvation).

In their paper, Bittner et al. [BWPP04] suggest additional tweaks to improve perfor-

mance:

Conservative visibility testing Instead of testing a node for visibility each frame, a

visible node is assumed to stay visible for a certain time. This time can be

a constant frame number or depend on camera movement or occlusion query

success history

Approximation Nodes with only a few pixels visible can be assumed invisible. This

has to be tuned carefully to avoid visible artifacts

32

4.7 Compressing vertex buffers

Avoiding CPU stalls Instead of waiting for a query to return if no nodes remain to

traverse, nodes with undecided visibility may be traversed without waiting for

their query. The query is kept in the queue but the node is marked as traversed

to avoid traversing a node twice

Implementation of this occlusion culling technique has vastly improved City Viewer ’s

performance when parts of the scene are invisible. On the other hand, performance

didn’t really suffer for the worst case of everything visible.

In the mean time, Mattausch, Bittner and Wimmer have presented a paper further im-

proving this technique [MBW08]. Among other improvements, they focus on reducing

state changes by batching previously visible and invisible nodes separately.

4.7 Compressing vertex buffers

As the memory needed for storing geometry data of a city scene can be quite large,

compression should be used. With current graphics hardware, a vertex shader can be

used for decompressing data of a vertex buffer that has been compressed on the CPU

before uploading.

Vertex data like position, normals or texture coordinates is usually stored as 32-bit

floating point data for each component. A position vector has four components, a

normal vector has three components and a 2D texture coordinate vector has two com-

ponents. For each vertex, this results in storing 16 bytes for position, 12 bytes for

normal and 8 bytes for texture coordinates. Altogether each vertex uses 36 bytes un-

compressed. After applying several simple and inexpensive compression methods, each

vertex will only use 16 bytes without significant performance decrease or artifacts.

4.7.1 Position data

Position is usually stored in homogeneous coordinates, which consist of 4 components

in 3-dimensional space. However, the position vector given by scenes is (almost) always

homogenized, meaning the w component is equal to one. This effectively allows to

simply store positions using 3 components. The vertex shader then simply initializes

the w component to one.

While this does save 4 bytes per vertex without losing accuracy, a much better com-

pression method can be used. Spatial coherency given by the kd-tree can be exploited

33

Chapter 4 Rendering

by storing relative coordinates instead of absolute coordinates. Each vertex can be

expressed in relative coordinates with respect to the node containing the vertex. As

the kd-tree used for the scene is quite deep and the volume contained quite small, it

suffices to store each coordinate as unsigned 16 bit integer. This results in 8 bytes

per vertex, as each element of a vertex buffer must be aligned to 4 bytes16. When

rendering geometry, the vertex shader is given the current node extent, which allows

it to decompress the vertex data easily.

4.7.2 Normal data

Normals can be stored in spherical coordinates instead of cartesian coordinates. This

reduces each normal to two components. Additionally, using 16 bits for each com-

ponent is sufficient. The current implementation therefore uses 16-bit floats for each

component.

4.7.3 Texture coordinate data

The value range for storing texture coordinates is quite limited. While the maximum

texture coordinate size on current hardware is 8192x8192, a 16-bit floating point vari-

able17 can store absolute integer values of up to 2048 without losing any accuracy.

This suffices for most textures, whose size usually is below or equal to 2048x2048.

However, CityGML allows wrapped relative texture coordinates outside [0; 1]. Al-

though used rarely, these may lose precision. Simply converting the coordinates to

integer coordinates and using a modulo division by texture size on them can solve

this. This may introduce artifacts for tiled textures that shall be contained several

times in a polygon. In practice, these cases have not been encountered during de-

velopment. The current implementation simply converts 32-bit floats to 16-bit floats

without any additional actions. Optionally, 32-bit texture coordinates are used.

16To save memory, it has been tried to use two buffers for storing the position data to avoid
alignment issues. The first buffer contained 2 bytes each for the x and y component, while
the second stored 2 bytes for the z component. This resulted in vastly reduced performance,
and has therefore been skipped

1716-bit floats consist of 1 sign bit, 5 bytes exponent and 10 bytes mantissa

34

4.8 Transparency

4.8 Transparency

City Viewer supports display of nonrefractive transparent materials. Rendering ob-

jects with transparent materials differs a great deal from opaque objects. Transparent

objects are handled as explained by Foley et al.[FvDFH96b]. Nonrefractive trans-

parency does not bend light rays when passing through a surface, which is of course

not the case in reality, but is much easier to implement and usually provides good

quality.

City Viewer handles transparent polygons by interpolating the shaded color values

by the transmission coefficient kt ∈ [0; 1] of the polygons. Considering two non-

overlapping polygons with polygon 1 (partly) occluding polygon 2, the resulting color

intensity can be calculated by

Iλ = (1− kt1) Iλ1 + kt1Iλ2, (4.1)

where kt1 represents the transparency of the polygon in front and Iλ1 and Iλ2 are

the shaded illumination intensities of the front and back polygon. A transparency

value of 1 means full transparency, while a transparency value of 0 represents a fully

opaque object. In the implementation, interpolation is done by using alpha blending

as supported by graphics cards.

This interpolation method obviously only works for polygons sorted back-to-front, as

a different interpolation order results in completely different interpolated values. In a

z-buffer-based system, polygons can be fed to the pipeline in any order. This means

an opaque object behind an transparent object will not be drawn on the screen due

to failing the depth test. Even putting all transparent polygons into a list and render-

ing them last with depth test disabled will not consider the order of the transparent

polygons. City Viewer therefore sorts the list by depth before rendering the polygons.

This produces the correct result, except that intersecting polygons will produce arti-

facts. These could be solved by sorting each pixel with a technique called virtual pixel

maps as proposed by Mammen [Mam89].

35

Chapter 4 Rendering

36

Chapter 5

Shadows

Shadows are an essential part of high-quality computer generated images. Without

shadows, scenes have an unrealistic look, as each natural scene has objects that cast

shadows. There are several ways to add shadows to a rendered image, for example:

Ray tracing is a very high-quality method to render scenes. To calculate the shadow

properties for each pixel, a ray is cast through the scene in the direction of every

light source. If the ray intersects any object, no lighting from this light source

is added to the pixel. To generate soft shadows, more expensive methods exist

that cast many rays per pixel.

Shadow volumes are another way to generate precise sharp shadows. The general idea

is to extrude the shadow caster geometry in light direction to infinity, which is

called the shadow volume. This extruded geometry is then rendered into the

stencil buffer of the frame buffer, with front facing polygons increasing the stencil

count and back facing polygons decreasing the stencil count. If the stencil count

for a pixel is non-zero, the pixel is in shadow, otherwise it is not. Issues arise

when the camera position is inside the shadow volume, which requires more

complex tests. The easiest method suited to solve these, depth fail, is patented

by Creative Labs [BS02].

Shadow maps are probably the most common way nowadays to generate real-time

shadows for directional and spot lights. The scene, as seen by the light, is

rendered to a texture (shadow map), storing the depth values. Afterward, the

scene is rendered again from camera view and using shadow map information.

Our application has several requirements regarding shadows:

� Support of large scenes

37

Chapter 5 Shadows

� Support of high-polygon scenes

� High-quality shadows

� Real-time calculation

Sadly, none of above approaches meet each requirement.

Ray tracing, even if only used for calculating shadows, does not support high frame

rates on standard consumer hardware, although newer research proved at least low

frame rate interactive rendering using SSE and multi-core processors [Wal04].

On the other hand, shadow volumes work nicely for many shadow applications, how-

ever they are not really suited for high-polygon scenes. The main problem using them

is the high amount of fill rate required to render the extruded polygons, along with

patent issues.

Shadow maps seem to be the most appropriate way to implement shadows in our case.

However, they fail at meeting the quality requirement. Shadows generated by shadow

maps often suffer from aliasing artifacts. Although using higher resolution shadow

maps helps to increase quality, the resolution required to appropriately represent the

shadows of a whole city is not affordable. There are several works researching methods

to increase shadow map quality using more than one shadow map or using perspective

matrices that increase detail of the shadow map closer to the camera. None of the

methods really achieved the quality intended for City Viewer , but shadow maps are

the best choice for the application and therefore the default technique for displaying

shadows.

5.1 Shadow maps

The idea behind shadow maps is quite simple. Basically, the scene is rendered as it

is seen by the light. Instead of color information only depth information is stored in

a texture. This texture is called shadow map (visualized in figure 5.1). This depth

information can then be used in the eye render pass as follows: For each rendered

pixel, the z coordinate of the pixel’s world position transformed by the light view

matrix is compared to the depth value stored in the shadow map. If the depth value

of the shadow map is less, the pixel is in shadow, otherwise it is not. As this approach

is image based, it suffers from aliasing artifacts, especially in large scenes.

38

5.1 Shadow maps

Shadow Map

Figure 5.1: A common shadow map setting. One texel of the shadow map is marked.
Figure idea taken from [Sch05]

5.1.1 Self-Shadowing

A simple implementation of shadow mapping suffers from strong artifacts due to self-

shadowing of primitives, as seen in figure 5.2. This is one of the main problems when

using shadow maps. Self-shadowing is immediately visible to the user, and therefore

should definitely be avoided. An easy approach to reducing these artifacts is to add

a depth bias to the shadow map. This is visualized in figure 5.5. This bias must not

be too large, otherwise shadows will be missing when the shadow caster is close to the

shadow receiver.

Another popular way to avoid self-shadowing is to ignore front facing polygons when

rendering the shadow map, however this introduces artifacts in several cases like figure

5.3. City Viewer therefore does not use this method but a bias.

Figure 5.2: Shadow map self-
shadowing artifacts

Figure 5.3: Shadow map including
backfaces only

39

Chapter 5 Shadows

Setting the bias

Trivially, a constant bias could be added to the depth value before storing it in the

depth buffer of the shadow map. However, this makes it difficult to balance the bias,

as primitives with a high depth slope compared to the light direction need a much

larger bias than those that are orthogonal to the light direction vector. This can be

seen in figure 5.4.

Shadow Map

Figure 5.4: Two lines with different depth slopes compared to the light direction. The
left line needs a much larger depth bias than the right line, as its depth
slope is much larger

Usually 3D graphics APIs (in this case Direct3D 10) therefore offer a way to specify

several constants which specify the total depth bias added to a primitive:

DepthBias A constant value that is added to the calculated depth value

SlopeScaledDepthBias This constant is multiplied with the polygon’s maximum depth

slope after transformation and added to the depth bias

DepthClamp Maximum depth bias that may be added to the depth value

The total bias is then calculated by

Bias = min (DepthBias+ SlopeScaledDepthBias ·MaxDepthSlope,DepthClamp)

(5.1)

This equation only applies to positive depth clamp values. For negative clamp values

40

5.2 Variance shadow maps

(which are not useful for shadow mapping, though), the following equation applies:

Bias = max (DepthBias+ SlopeScaledDepthBias ·MaxDepthSlope,DepthClamp)

(5.2)

The bias calculated this way is applied by Direct3D 10 to the vertices after clipping.

However, the depth value calculated using the bias cannot be read by the pixel shader.

If the pixel shader needs to output the modified depth value to the render target instead

of the depth buffer, this algorithm has to be implemented manually.

5.1.2 Aliasing

Another problem when using shadow maps is projection and perspective aliasing.

Projection aliasing happens when the camera view angle differs from the shadow map

view angle, as it is often the case when walking through a scene with sunshine, which

can be seen in figure 5.1. The different angle accounts for a large difference in the

amount of texels associated with a specific scene region. Figure 5.1 shows that only a

few texels of the shadow map are associated with the visible part of the tree, while a

large part of the screen is occluded by the tree.

This is worsened by perspective aliasing, which is created by the perspective view

used for displaying the scene to the user. Objects that are closer to the camera are

larger on the screen than objects far away. However, the shadow map usually does

not account for this, which results in a low resolution and therefore undersampling of

shadows close to the camera, while shadows in the distance are often oversampled.

Perspective aliasing “scales” the error introduced by projection aliasing. Figure 5.3

shows these artifacts as “jagged boundaries”.

5.2 Variance shadow maps

5.2.1 Idea

Variance shadow maps try to reduce the artifacts introduced by shadow map aliasing.

The idea is to interpolate the shadow boundaries as can be seen in figure 5.6. However,

you cannot directly interpolate between texels of a standard shadow map, as the

41

Chapter 5 Shadows

Figure 5.5: Low resolution standard
shadow map

Figure 5.6: Low resolution variance
shadow map

shadow map stores depth values. Linear interpolation would be incorrect for boundary

edges of objects, as can be seen in figure 5.7. However, Donnelly and Lauritzen

Wrong interpolation

Figure 5.7: Incorrect depth interpola-
tion

introduced the variance shadow map algorithm [DL06]. Variance shadow maps don’t

store depth values, but the mean and squared mean of a depth distribution. Using

these two values the variance over a specific filter region can be computed. The

variance can then be used to compute an upper bound of the fraction of occlusion of a

fragment. As variance shadow maps store moments of depth distributions, this allows

use of standard filtering techniques available on current hardware, like mip mapping or

anisotropic filtering. Variance shadow maps don’t make any assumption about shadow

map projection, and are therefore suited to be combined with perspective shadow maps

described below.

42

5.2 Variance shadow maps

5.2.2 Implementation

The implementation of variance shadow maps is comparable to standard shadow maps.

Instead of storing depth values in a depth texture containing one component per

fragment, the depth and squared depth are stored in a two component texture. This

texture can then be subject to additional filters, like Gauss filtering or mip mapping.

However, depth biasing can’t be applied like explained in section 5.1.1, as the shadow

map is stored inside a color buffer instead of a depth buffer. The bias calculated by

Direct3D is not readable in the pixel shader, and therefore can’t be applied to the

output shadow map. It only affects the depth values stored in the depth buffer. This

has been solved by just using a constant bias stored as shader constant. Of course,

slope scaled biasing could be added manually, too.

When rendering the scene on the screen, the moments M1 and M2 from the filtered

texture must be retrieved and used to calculate the mean µ and the variance σ2:

M1 = E(x) (5.3)

M2 = E(x2) (5.4)

µ = E(x) = M1 (5.5)

σ2 = E(x2)− E(x)2 = M2 −M2
1 (5.6)

Donnelly and Lauritzen show that by using Chebychev’s inequality (one-tailed ver-

sion), an approximation of the fraction of pixels over a filter region that will fail a

depth comparison with fixed depth t can be calculated. For t > µ

P (x ≥ t) ≤ pmax(t) ≡ σ2

σ2 + (t− µ)2
(5.7)

pmax(t) can then be used as approximation of the amount of occlusion for the current

pixel.

5.2.3 Light bleeding

Due to the way variance shadow maps interpolate, it can happen that areas that

actually are in shadow are incorrectly classified as lighted. This can be seen in figure

5.8. These artifacts happen when a scene has high depth complexity. The high depth

complexity leads to a sharp change in variance.

43

Chapter 5 Shadows

Figure 5.8: Variance shadow maps suffer from light bleeding, as seen behind the wall

5.3 Image based Gauss smoothing

Figure 5.9: Image based Gauss filtering. No light bleeding artifacts as in figure 5.8

Although Variance Shadow Maps allow to interpolate between shadow map texels,

the resulting light bleeding artifacts have been conceived prohibitive for City Viewer .

As an alternative, image based smoothing may be used. The advantage of an image

based approach is that it can be applied to other shadow techniques, too. It can be

44

5.3 Image based Gauss smoothing

applied to shadows generated by shadow volumes or ray casting just as it can for

shadows generated by shadow maps. Therefore a well designed image based smoother

can easily be reused for other shadow visualization techniques.

Of course, it must be made sure that the shadows are only smoothed where they

should be. This means that errors like seen in figure 5.10 must be avoided using scene

information. Also smoothing must be based on distance to camera, otherwise shadows

will appear too fuzzy.

Figure 5.10: Shadow incorrectly smoothed along building edges using naive implemen-
tation

The general algorithm idea is as follows:

� Render shadow map as usual

� Apply shadow map to scene and render the applied shadow map to texture as

seen by the camera

� Apply Gauss filter to texture

� Render scene as seen by the camera, and use the smoothed texture as (image

based) shadow lookup

45

Chapter 5 Shadows

5.3.1 Gauss image filtering

Generally, Gauss filters in image processing are used for smoothing images. While large

structures remain, small structures are removed. This basically is what is needed for

removing shadow map aliasing artifacts. A two dimensional gauss filter can be created

based on the following formula:

h (x, y) =
1

σ
√

2π
e−

x2+y2

2σ2 (5.8)

σ specifies the standard deviation of a Gaussian distribution. This parameter controls

smoothing strength. In practice, a matrix with size N ×N is used for specifying the

Gauss filter kernel. x and y then specify the distance from the center of the kernel in

each dimension, and the result h (x, y) is the weight of the color at pixel (X/Y)1 to

the new pixel color.

To improve the speed of the smoothing operation for larger kernel sizes, the Gauss

filter can be separated into a N×1 and a 1×N filter. The whole smoothing operation

is then done by convoluting the two 1D Gauss filters.

5.3.2 Using scene information

The actual filter being used must use scene information to avoid smoothing areas that

are not connected to each other. For example, in figure 5.10 the grass behind the wall

is partly being lighted, as the Gauss filter smoothed the lighted area of the wall left

to the grass area.

While the shadow image is being smoothed, the scene already has been rendered for

the initial fill of the shadow image. Therefore access to the depth buffer is possible.

The Gauss filter can use the depth information to reproduce the world position of

each fragment it is smoothing. That way, when iterating through the kernel matrix,

elements whose world position is too far away from the central element world position

can be ignored. This threshold value can either be a constant or subject to modification

by the distance to the camera. The further away from the camera, the lower the

threshold should be, as when the camera is right in front of an object, smoothing

should only occur between several centimeters in world coordinates, while further

away the threshold may easily be a meter.

The other issue that has to be taken care of, is choosing σ, which sets the actual smooth

1relative to the current pixel being modified

46

5.4 Perspective shadow mapping

strength. Shadows that are far away may not be smoothed as strong as shadows close

to the camera.

σ and the maximum distance threshold may not be confused. While the first chooses

the smoothing strength of the Gauss filter in image space, the second considers world

space information. Both have to be tuned independently to achieve a good looking

result.

5.3.3 Conclusion

Smoothing in image space can produce very realistic soft shadows, given that the

shadow map aliasing is not too strong. However, if the camera is close to an aliased

shadow map edge, the filter size necessary for smoothing may be prohibitive for good

performance. Variance shadow maps adapt better to this, though light bleeding may

actually create worse artifacts than aliasing.

In conjunction with ray tracing shadows, Gauss smoothing in image space really shines.

While the soft shadows are fake, high-quality soft shadows can be achieved in real-

time. By tuning the smoothing constants the softness of the shadow edges can easily

be modified, thus allowing to fake area lights of different size.

5.4 Perspective shadow mapping

There are several approaches to decrease perspective aliasing which involve adding a

perspective transformation to shadow maps to increase shadow map resolution close

to the viewer. This section will introduce some of those methods. City Viewer itself

uses either standard uniform shadow maps or Extended Perspective Shadow Maps

(XPSM).

5.4.1 Perspective shadow maps

As described in figure 5.1.2, perspective aliasing is a major problem when using shadow

maps. Objects that are close to the user are projected to a large part of the screen,

while objects far away will be quite small. However, uniform shadow maps do not take

care of this.

47

Chapter 5 Shadows

One approach to decrease perspective aliasing is to increase shadow map detail close

to the camera, while decreasing shadow map detail for objects far away. Stamminger

and Drettakis therefore tried to reduce perspective aliasing using a method called

Perspective Shadow Maps (PSM) [SD02]. Their approach generates the shadow map

in post-perspective space of the camera. In this space objects close to the camera are

larger than objects far away, which is the desired effect.

An illustration of this approach can be seen in figure 5.11.

Figure 5.11: Directional light source applied to a scene (left). The
shadow map is generated in post-perspective space
(right). Figure taken from [SD02]

The general algorithm therefore is to transform the scene (including light source)

to the post-perspective space of the camera. Then, the scene is rendered from the

(transformed) light source to the unit cube. As the shadow map is generated after

perspective projection of the scene, in most cases perspective aliasing is reduced by a

large amount. Best results are achieved with the light direction being orthogonal to

the view direction.

However, generating the shadow map in post-perspective space does have some issues

that need to be handled. On the one hand, directional lights can turn to point lights

in post-perspective space and vice versa. For example, a directional light from behind

the camera will turn to a “inverted” point light, which needs special treatment by

reversing the shadow map depth test. On the other hand, it must be guaranteed that

all objects that may cast shadows to the visible scene are included when generating

the shadow map. This causes problems when these objects are behind the camera,

as those are projected beyond the infinity plane. Stamminger and Drettakis propose

fixing that issue by shifting back the camera until all caster objects are in front. This

shiftback only applies while creating the shadow map. However, this again increases

48

5.4 Perspective shadow mapping

the remaining aliasing artifacts, especially for scenes that already tend to converge to

uniform shadow maps.

Because of those implementation issues PSMs have not been included in City Viewer .

Still, the idea of PSMs spawned several other methods to generate shadow maps,

which will be described below.

5.4.2 Light space perspective shadow maps

Wimmer, Scherzer and Purgathofer introduced a new technique called light space per-

spective shadow maps [WSP04] to fix the issues caused by perspective shadow maps.

Most of the problems, like light types changing and inclusion of shadow casters behind

the camera, have their seeds in the camera perspective projection before creating the

shadow map. This results in complicated implementations. However, they argue that

the perspective projection that warps the shadow map does not have to be tied to the

view frustum. They made two observations:

� Any arbitrary projection transformation can be used to warp the shadow map

� As the idea is to change the shadow map pixel distribution, the warp only has

to affect the shadow map plane and not the perpendicular axis

This transformation, in contrast to PSMs, does not change type and direction of light

sources. Additionally, the problems involving shadow casters behind the camera are

fixed, as no singularities affect the shadow map generation. However, the method also

doesn’t take care of projection aliasing.

P

Figure 5.12: On the left: frustum showing perspective transform P and view frustum,
with light direction being parallel to the near and far plane of P. Right:
after applying P. Figure idea taken from [WSP04]

49

Chapter 5 Shadows

Algorithm idea

1. Focus shadow map on convex body B that includes the view frustum and all

objects casting visible shadows

2. Enclose B with perspective frustum P as can be seen in figure 5.12, using a view

vector that is parallel to the shadow map plane

3. Choose free parameter n of P , which is the distance of the projection reference

point p to the near plane of P . This parameter controls the warping strength.

4. Use P for generating and reading the shadow map.

5.4.3 Extended perspective shadow maps

Vladislav Gusev proposes a two step method [Gus07] for calculating the shadow map

matrix. The first step is to find the optimal warping effect followed by finding an affine

transformation that doesn’t affect this optimal warping and transforms the warped

space to device normalized coordinates.

Gusev points out that you can apply any arbitrary transformation to light space2, as

long as all points along a light ray are projected to the same point (X ′′, Y ′′)3 of the

shadow map. The transformation applied can be described as follows:


X ′

Y ′

Z ′

W ′

 =


X

Y

t

1

 ·

Ax Ay Az Aw

Bx By Bz Bw

Cx Cy Cz Cw

Dx Dy Dz 1

 (5.9)

(
X ′′

Y ′′

)
=

~Axy · x+ ~Bxy · Y + ~Cxy · t+ ~Dxy

Aw ·X +Bw · Y + Cw · t+ 1
(5.10)

As X ′′ and Y ′′ must be independent of t in order to satisfy the requirement of all light

ray points being projected to the same point on the shadow map, two constraints can

2Light space is defined by Gusev as light direction parallel to the z axis and the viewer origin
translated to (0, 0, 0)

3cartesian coordinates

50

5.5 Cascaded Shadow Maps

be introduced and used to build the needed arbitrary transformation formula:

~Cxy =

(
0

0

)
(5.11)

Cw = 0 (5.12)(
X ′′

Y ′′

)
= (~Axy ·X + ~Bxy · Y + ~Dxy) · 1

Aw ·X +Bw · Y + 1
(5.13)

Therefore the projection vector is (Aw,Bw, 0, 1)T .

To find the direction of the projection vector, simply the direction of the camera view

(in light view space) must be projected onto the xy plane. Finding the length of the

projection vector (which defines the warping strength) isn’t that straightforward, how-

ever. Objects behind the camera that cast shadows onto the currently visible scene

must be considered, as singularity issues may arise when projecting them. Further de-

tails can be read in Gusev’s XPSM paper [Gus07], which describes the whole algorithm

in detail.

In practice, XPSM’s proved quite useful and robust while tuning the shadow algorithms

of City Viewer . Still, projection aliasing problems were not addressed.

5.5 Cascaded Shadow Maps

While PSMs, LSPSMs and XPSMs try to reduce perspective aliasing by applying a

projection transformation to the shadow map, Cascaded Shadow Maps (CSM) use a

different approach. Perspective aliasing is countered by creating several shadow maps,

each one being responsible for a different part of the scene.

One idea of using multiple shadow maps would be to statically divide the scene into

several parts, and rendering each of those parts to a shadow map. However, this static

approach is quite limited. If the camera was centered in one of those parts, a large

part of the shadow map would be wasted. Also, some of the shadow maps would be

completely unused if their scene parts were fully behind the camera.

Cascaded Shadow Maps therefore dynamically select the parts of the scene each shadow

map represents. Each shadow map shall represent a part of the view frustum. The

parts are selected by different near and far clip planes of the frustum, therefore having

one shadow map for near scene objects and one for far away objects. Additionally,

51

Chapter 5 Shadows

more shadow maps can be used for objects in between.

Basically, Cascaded Shadow Maps have the same goal as PSM methods: increasing

shadow map resolution close to the viewer while decreasing it far away. However, they

do this in a discrete way, contrary to PSMs.

Selecting the near and far plane for each frustum should not be hard coded. Instead,

it should be tried to provide the same aliasing error on the whole screen. That way,

visible changes in the shadow quality can be avoided. Dimitrov [Dim07] shows that

for a large number N of splits, the split planes should be located at:

zi = n

(
f

n

) i
N

(5.14)

Typically N is small, though. This exposes the user to the split planes. To avoid this,

Dimitrov [Dim07] adds a linear term:

zi = λn

(
f

n

) i
N

+ (1− λ)
(
n+

(
i

N

)
(f − n)

)
(5.15)

As the shadow map frusta are now known, each shadow map must focus on its frustum.

For each frustum the corner points are calculated and transformed to the orthogonal

light view. Then the bounding box of the transformed corner points is calculated.

Using this bounding box an offset and scale matrix can be calculated to focus the

shadow map on the frustum.

Afterward N shadow maps are rendered. Usually, the render target is a texture array.

That way, the pixel shader can directly sample the correct texture. To compute the

index of the texture, the z-far distances of each frustum are uploaded as shader con-

stants. The pixel shader then simply compares the current z value to these constants

to find the appropriate shadow map texture index.

Otherwise, everything works as usual. The technique can easily be combined with

other technologies like Variance Shadow Maps or Extended Perspective shadow Maps.

Combination with perspective shadow map techniques does not produce a vast im-

provement, though, as both improve the same aliasing problems.

52

5.6 Refining shadow maps using raytracing

5.6 Refining shadow maps using raytracing

Using shadow maps, shadows often have poor quality, as seen in figure 5.5. Therefore,

a hybrid approach has been added to City Viewer . The idea is to apply the shadow

map to the scene as usual. Afterward, the poor quality shadow edges are refined using

raytracing. That way it is only necessary to cast rays for parts of the screen, which is

much faster than raytracing the whole screen.

This is the general algorithm idea:

1. Calculate shadow map (as seen by light)

2. Apply shadow map to scene and render scene to texture (as seen by eye).

a) Apply shadow map to scene as seen by the eye

b) Use special shader that writes primitive ID and flag specifying if pixel

needs to be refined to texture

3. Download texture to CPU

4. For each pixel which needs to be refined:

a) Cast ray in light direction and write result to texture

5. Upload resulting texture to GPU

6. Render scene as seen by the eye using original shaders and looking up shadow

information in the refined texture

The primitive ID is used to find the world position of the pixel (using ray-primitive

intersection). This could also be done by exploiting depth buffer information, however

this introduces further accuracy problems. This approach was therefore skipped, al-

though it was slightly faster. Another benefit of storing the primitive ID is the option

to add other features like reflections using the ray tracer, as the ID allows us to ac-

cess surface information instead of only position information. Also, the ID approach

allows to use transparent objects, as the ray tracer can access material information.

The general idea of using an item buffer to find the closest object at a given pixel has

been described by Weghorst, Hooper and Greenberg [WHG84].

Basically, the first ray generation is casted by the GPU using rasterization methods,

along with some second generation rays for parts of the shadows, while all other

53

Chapter 5 Shadows

ray generations are handled by the CPU. This hybrid approach allows for quite fast

implementations of high-quality shadows for large-scale and high-polygon scenes.

In City Viewer ’s implementation, the refined texture has 4 components with 8 bits

each. The RGB components hold optional color data that will simply be added to

the GPU calculated color data, while the Alpha component holds shadow information

with 0 representing no shadow and 255 representing full shadow. This approach only

supports one light source which is considered appropriate for City Viewer ’s uses. Sup-

port for several lights or additional information can easily be added by using several

textures or increasing bit count.

5.6.1 Finding shadow edges

In order to refine the (projected) shadow map, the edges of the shadows projected

into eye view have to be found. This has been achieved using variance shadow maps

described before. Whenever the variance calculated is not zero, the texel is marked as

to be refined.

Of course, this approach has some limitations. It is still based on the quality of the

shadow map. Therefore, if the shadow map completely misses a hole in a shadow

casting object, this hole will still be missing after refinement. Also, several different

artifacts can occur under extreme circumstances.

To avoid these artifacts, one can filter the variance shadow map before applying it,

for example using a Gauss filter. If all artifacts need to be avoided, this would result

in shadow rays being cast for the whole screen. Although this can still be done

interactively, doing this does affect frame rate quite a bit. Finding that trade-off is

application specific or can be left to the user.

Another way to decrease raytracing workload is to avoid refining areas that are far

away from the eye. If this threshold is chosen wisely, introduced artifacts are almost

invisible to the human eye, but the performance improvement can be huge.

5.6.2 Applying the refined projected shadow texture

After uploading the refined projected shadow texture it has to be applied to the scene

in another pass. This pass is the actual pass that renders to the screen.

This can be implemented quite straightforward. Basically, the pixel shader does not

54

5.6 Refining shadow maps using raytracing

anymore look up shadow information using the shadow map as described in section

5.1, but simply uses the information calculated by the CPU in the refined shadow

texture, which has already been projected into eye view.

This method can introduce artifacts when using transparent objects due to the image-

based nature, as objects behind the front transparent object look up the shadow

information of the transparent object. However, these artifacts are hardly visible.

55

Chapter 5 Shadows

56

Chapter 6

Ray tracing

Ray tracing is a high-quality method for rendering scenes. Instead of rasterizing

primitives like conventional 3D graphics cards, rays of light are traced throughout the

scene.

The original idea of ray tracing is to create a large amount of rays beginning at a

light source. Then each ray is checked for the closest intersection with an object.

The material of this object then defines how to proceed, as the ray may be (probably

perfectly) reflected and (partly or fully) absorbed. This may spawn one or several new

rays, which are then recursively traced the same way.

While doing this, the ray may intersect the visible part of the camera’s near plane.

Once this happens, the remaining light color can be added to the screen buffer1 at the

appropriate location.

Of course, this algorithm is highly inefficient, as only a very small amount of light rays

will finally contribute to the screen image, and many of these rays will only add a very

small amount of light. An actual implementation of ray tracing therefore usually uses

the opposite idea: tracing rays from the eye through the camera’s near plane.

This chapter will give a short introduction to this algorithm. However, it will focus

on shadow rays and performance improvements, as these have been the main research

areas for the development of City Viewer to improve shadow quality in real-time.

1The screen buffer is initially filled with black

57

Chapter 6 Ray tracing

6.1 General algorithm

The actual ray tracing algorithm works differently than above. Instead of tracing rays

from the light through the scene to the eye, rays are traced the opposite way2. Foley,

van Dam, Feiner and Hughes explain that “ray tracing, also known as ray casting,

determines the visibility of surfaces by tracing rays of light from the viewer’s eye to

the objects in the scene” [FvDFH96e].

This is done by selecting the eye as center of projection (and thus ray origin) and

interpreting the screen as a window of a view plane. Usually the near view plane is

chosen. The center of each 2D pixel on the screen is then transformed into the view

plane. For each of those pixels, a ray is cast from the eye through the position of

the pixel in the scene. In a naive implementation, each object is then checked for

intersection with the ray in order to find the intersection closest to the eye.

Once the closest intersection has been found, reflection, refraction and shadow rays

can be spawned. This thesis does not cover reflection and refraction rays, as those

have not been needed for the application. Foley et al. [FvDFH96b] do provide a good

introduction to them.

The shadow rays are spawned from the closest intersection to each light source in the

scene. Again all objects are checked for intersection. If an object intersects a shadow

ray, the current pixel is considered in shadow with respect to the light source3.

6.2 Fast ray-triangle intersection

The rays need to be tested against different kinds of objects. While there are some

object types (like spheres) that are very fast and easy to test against an intersection

with a ray, the scenes City Viewer has to handle consist mainly of polygon surfaces

which have been triangulated. Many algorithms exist for calculating ray-triangle in-

tersections. However, many of those use very similar approaches with slight differences

in detail.

2Actually, there indeed are ray tracing systems that trace from the light source. Those usually
have special purposes and use involved optimizations to increase the amount of eye-hitting
rays. They are usually called forward ray tracing systems, though some refer to them as
backward ray tracing systems, as they use the opposite of the usual direction.

3If the intersecting object is semi-transparent, the shadow value must be dampened and the
shadow ray tracing must continue from the point of intersection to the light source. City
Viewer does not support semi-transparent object shadow casters currently.

58

6.2 Fast ray-triangle intersection

City Viewer does ray-triangle intersections using a method described by Wald [Wal04].

The method (as most approaches) first calculates the signed distance tplane along the

ray to the plane specified by the triangle’s vertices A, B and C. With the ray R

specified by the origin O and direction D, this can be computed as

N = (B −A)× (C −A) (6.1)

tplane = −(O −A) ·N
D ·N

(6.2)

tplane is then tested against tmin and tmax, which specify the minimum4 and maximum5

signed distance allowed. If tmin ≤ thit ≤ tmax is false, the ray intersection returns

immediately. Otherwise, the hit point H is calculated by

H = O + tplaneD (6.3)

Then the barycentric coordinates of H in the triangle can be calculated. Once the

barycentric coordinates α, β and γ are known, they can be used to test if H is inside

the triangle. This is true when the following condition is fulfilled:

(0 ≤ α ≤ 1) ∧ (0 ≤ β ≤ 1) ∧ (0 ≤ γ ≤ 1) (6.4)

Instead of testing 0 ≤ α ≤ 1, β + γ ≤ 1 can be tested to avoid calculation of α. This

can be done because of the way barycentric coordinates are defined (α+β+γ = 1).

Although calculation of the barycentric coordinates can be done directly in 3D by

solving a system of equations or using geometrical methods, Wald suggests to use the

projection method described below.

6.2.1 Projection method

Wald explains that projecting both the triangle ABC and the hit-point H into any

plane (except planes orthogonal to ABC) does not change the barycentric coordinates

of H. By projecting both to one of the 2D coordinate planes, calculation of the

barycentric coordinates can be done in 2D. Wald suggests to project to the plane with

the maximum projected area, which can be found by comparing the absolute values of

the components of N . The dimension with the highest absolute value in N is used as

4tmin specifies a small positive epsilon to avoid self-intersection of rays that have been spawned
on surfaces

5tmax usually is the current shortest intersection distance found, if existing

59

Chapter 6 Ray tracing

“projection dimension”. This dimension is ignored when calculating the barycentric

coordinates.

Let A′, B′, C ′ and H ′ be the projected points of A, B, C and H.

H ′ = αA′ + βB′ + γC ′ (6.5)

By substituting α = 1− β − γ, the term results in

β
(
B′ −A′

)
+ γ

(
C ′ −A′

)
= H ′ −A′ (6.6)

Wald shows that by solving this equation using the Horner scheme, β and γ can be

calculated by

β =
buhv − bvhu
bucv − bvcu

(6.7)

γ =
cvhu − cuhv
bucv − bvcu

, (6.8)

where h = H ′ −A′, b = C ′ −A′ and c = B′ −A′. u and v specify the dimensions that

are used for calculating the barycentric coordinates. For example, if the projection

dimension is y, then x is used for u while z is used for v. As in implementations

the different components of a vector usually are stored in an array, u and v can be

calculated by the projection dimension k as follows:

u = (k + 1)mod3, v = (k + 2)mod3 (6.9)

Instead of using the modulo operation, a lookup table can be used.

6.2.2 Precalculating the projection method

Wald points out that the projection method calculates many values each frame that

are constant for a triangle. Like many intersection methods the triangle normal is

used. The normal is constant and should be precomputed. To save memory, only the

u and v components of the normal are stored. This is done by dividing N through

Nk
6:

N ′ =
N

Nk
(6.10)

6Nk cannot be zero as k is the projection dimension

60

6.2 Fast ray-triangle intersection

Thus N ′k is equal to one and doesn’t need to be stored. This leads to

t =
A ·N ′ −Ou ·N ′u−Ov ·N ′v −Ok ·N ′k

Du ·N ′u +Dv ·N ′v −Dk ·N ′k
(6.11)

d = A ·N ′ is constant and can therefore be precalculated. It is stored along with N ′u

and N ′v.

Similarly, calculation of the barycentric coordinates can be simplified, too:

β =
buhv − bvhu
bucv − bvcu

(6.12)

=
1

bucv − bvcu
(
buH

′
v − buAv − bvH ′u + bvAu

)
(6.13)

=
bu

bucv − bvcu
H ′v +

−bv
bucv − bvcu

H ′u +
bvAu − buAv
bucv − bvcu

(6.14)

= KβvHv +KβuHu +Kβd (6.15)

Only the constants Kβv, Kβu and Kβd have to be stored. The same precomputation

can be done for γ.

6.2.3 Cache efficiency

As mentioned by Wald, preprocessing must be done carefully to avoid cache misses.

A cache miss may easily cost more than doing the actual calculation on the fly. He

proposes to use a triangle intersection acceleration structure for each triangle, which

only holds the constants necessary for intersection. For optimal cache performance,

these structures must be stored linearly in memory using a special triAccel array. That

way, indices and vertices don’t have to be touched when calculating intersections. This

avoids many pointer indirections, which usually have a bad impact on caching. The

structure must hold 10 values: 3 floats (d, N ′u, N ′v) storing the plane equation, 6 floats

for storing the 2D line equations (Kβv, Kβu, Kβd, Kγv, Kγu and Kγd) and an integer

for storing k. The values should be stored in the same order as they are used when

intersecting. Also, considering the use of SSE as explained later, an alignment of 16

bytes for the plane equation (together with k) and each of the two line equations

should be used to avoid costly unaligned loads.

The usage of a special structure for each triangle also allows to prefetch the next trian-

gle while working on the current. Newer processors offer special prefetch instructions

to do this.

61

Chapter 6 Ray tracing

6.3 Performance improvements

Up to now, only the basic ray tracing algorithm has been discussed, along with an

efficient triangle-intersection technique. However, there are many other ways to im-

prove ray tracing performance. Some limit the amount of intersections that have to be

made, while others improve actual intersection speed using low-level improvements.

Some of these techniques are presented here.

6.3.1 Space partitioning

This is the most obvious improvement that can be made. City Viewer already uses a

kd-tree for culling invisible parts of the scene when rendering using the GPU. Basically

the very same can be done to individual rays. If a ray doesn’t intersect a kd-tree node,

it won’t intersect any child nodes or objects, too. For rendering using the GPU,

occlusion queries are used to determine visibility of a node. For ray tracing, the node

bounding boxes are instead tested for intersection.

However, it is not necessary to test all bounding box sides of a node due to the

hierarchical structure of a kd-tree. Wald describes an algorithm that efficiently takes

use of this hierarchy. He introduces a current ray segment [tnear, tfar], which describes

the parameter interval of the ray that intersects the current voxel. This segment is

initialized to [0,∞) and clipped to the bounding box of the whole scene. During

traversal this interval is updated incrementally as follows:

When traversing a node, the distance d to the node’s clipping plane is calculated. d

is then compared to tfar and tnear. If d ≥ tfar or d ≤ tnear, the ray segment lies

completely on one side of the splitting plane. This side will then be traversed, while

the other side can be culled7. Otherwise, both sides must be traversed. The first one

is assigned the ray segment [tnear, d], and the second one [d, tfar].

This algorithm has the advantage of only using 1D computations. It also doesn’t

calculate or store any overhead information like entry, exit or intersection points. As

the tree is traversed in front-to-back order relative to the ray, this also allows to use

early ray termination. Once a primitive hit is found after testing a leaf, the traversal

can be stopped.

The algorithm also has another advantage: the space necessary for storing a kd node

7care must be taken to handle triangles that lie on the splitting plane, and rays parallel to
the plane must be considered, too

62

6.3 Performance improvements

is small, as it does not need to include information like bounding boxes. City Viewer

doesn’t use the original kd-tree structure for ray tracing. Instead, a cache optimized

kd-tree as introduced by Wald is used for traversal. This tree is built using the original

kd-tree. All nodes in the array are stored in an array, therefore taking better usage

of the cache. Additionally, this allows to save memory for each node, as explained

in figure 6.1. Each node stores a single bit inside an integer that specifies if it is

N1 N2 N3 N4 N5

Figure 6.1: Memory layout of cache efficient kd tree

a leaf node. If it is, the other 31 bits of the integer specify the object count stored

in the node. If the node is not a leaf, 2 bits of the integer are used for the splitting

dimension, while the remaining 29 bits contain an offset to the first child of the node8.

Another 32 bit union is used for leaves and parent nodes. Leaves contain a pointer

to the objects inserted and parents contain the split value of the node. That way, a

whole node only takes 8 bytes, thus allowing several nodes to be stored inside a single

cache line.

6.3.2 Multithreading

Ray tracing is an algorithm that can easily be parallelized using multithreading. City

Viewer does this by dividing the screen into quadratic bricks9 of the same size. Each

brick is associated with a flag that tells whether the brick has already been worked

on. Several worker threads are started. Each one takes an unflagged brick, flags it

and then applies the ray tracing algorithm to it. Once finished, it searches the next

unflagged brick and continues. Testing and setting the flag is done using an atomic

function that increases the flag integer and returns the new value. As the flag integer

is initialized to 0, the worker thread only works on an brick if the value returned is

exactly 1, not higher.

This brick approach using flag integers makes sure that each thread has approximately

the same work. Fixed association of threads to bricks contains the risk of some threads

having less work than others, especially as the ray tracer may just be refining parts of

the image.

8as the node size is a multiple of 8, the lowest 2 bits can be assumed to be 0, which makes
the offset effectively 31 bits wide

9A typical brick size is between 8x8 to 32x32 pixels

63

Chapter 6 Ray tracing

Other than the atomic operations for setting the brick flags, no synchronization is

necessary, as only thread specific data is modified, while shared data is just read.

6.3.3 Caching shadow casters

The main reason for supporting ray tracing in City Viewer are shadows. Shadow rays

do have an interesting property: it does not matter which object they hit, so finding the

closest intersection is unessential. Instead, just knowing if there is an intersection or

not does suffice10. This allows to use a cache list for each brick which contains the last

primitives that have been intersected by shadow rays. Due to using one cache list per

brick local coherency should be high, even between frames. Instead of immediately

traversing the kd tree when testing a shadow ray, the cache of the current brick is

searched.

6.3.4 SSE

Streaming SIMD Extensions (SSE) is an extension of the x86 architecture developed by

Intel. It is an “Single Instruction, Multiple Data” (SIMD) architecture, meaning the

same instruction is applied to several data values. This is also called vector processor,

as usually a vector of data is used for calculation. SSE uses 128 bit wide registers. As

an example, instead of four 32-bit floating point multiplication instructions, a single

instruction suffices. SSE provides several overloads for the specific operations to allow

multiplication of two 64-bit floating point values just as four 32-bit values.

In our case, usually four 32-bit floating point values are handled at once. Although

64-bit precision may help with some precision issues, the significant performance ad-

vantages of using 32-bit precision values are preferred for the real-time rendering in-

tentions of City Viewer .

The SSE version of the ray tracing algorithm traces four rays in parallel. Another

option would be to trace one ray at once and test it against four triangles. However,

the actual kd tree traversal, which takes a significant amount of processing time, is

not parallelized that way.

10City Viewer does not support semi-transparent materials regarding shadows. Otherwise the
closest intersection must be found for correct handling of semi-transparency

64

6.3 Performance improvements

Data ordering

One problem with using SSE is data ordering. Usually, data is stored in an Array of

Structures (AoS) order. Rays, for example, are then stored like in figure 6.2. This

RayQuad Ray
4

Vector3

+x: Float
+y: Float
+z: Float

+origin

1

+direction

1

Figure 6.2: Array of Structure approach to ray quads. This is inefficient for SSE in
practice, as parallelism is quite limited to a few instructions

does not lend well for using SSE instructions. Wald shows that an Structure of Arrays

(SoA) order is much better. This can be explained by looking at figure 6.3. Each

RayQuad

Vector3Quad

+x[4]
+y[4]
+z[4]

+origin
1

+direction

1

Figure 6.3: Structure of Array approach to ray quads. A ray quad can be handled
exactly like a single ray in the non-SSE version.

line of code can be directly translated to just operate on four floating point values

instead of a single floating point value, as each of those values has the same semantic

meaning11. In contrast, the AoS approach would impose changing the actual algorithm

to achieve good parallelism. In an AoS approach, a Vector3 could be accessed as SSE

128 bit value and the four floating point values would represent x, y, z and a padding,

thus changing the semantic meaning of each single value. Although some parallelism

could be introduced by using SSE operations for vector additions, subtractions and

similar operations, it would be quite limited to specific low level parts. SoA however

achieves parallelism for almost all operations.

11In this case, all four floating point values would for example represent x, y or z coordinates
of four different vertices

65

Chapter 6 Ray tracing

Thanks to the SoA approach, SSE code is easy to apply to the given Single Instruc-

tion, Single Data (SISD) algorithms. To calculate the hit point on the uv plane, the

following code is used in the non-SSE version:

float hu = rayOrigin[u] + d * rayDirection[u];

In the SSE version, four rays are processed in parallel. This can easily be written as

m128 hu = mm add ps(rayQuadOrigin[u], mm mul ps(d, rayQuadDirection[u]));

Full parallelism can only be achieved using an SoA approach. It allows to directly con-

vert each instruction to SSE. An instruction that adds the x components of two vectors

then just adds the x components of two vector quads. Although some instructions can

be parallelized without SoA (like vector adding), SoA does not offer full parallelism

for more complex algorithms (like matrix-vector multiplication). Klimovitski [Kli01]

offers a more detailed introduction to SSE along with efficient ways of converting AoS

structures to SoA, as naive conversion algorithms are subject to memory stalls.

SIMD traversal

Traversal of the kd tree using SIMD on four rays is basically done like traversal of a

single ray. Four rays12 are put into a ray quad, which is then processed at once. All

four rays of the quad are put together and follow the same traversal path until all rays

have finished. Some special cases have to be handled though:

� Not all rays may need to visit a certain node. However, if just one ray needs to

visit the node, the whole quad must visit the node. This is rarely the case, as

usually ray coherency is strong.

� This also implies that the whole quad must be traversed until all rays have hit

or the traversal stack is empty.

� The front-to-back traversal order for the individual rays may differ. Wald shows

that this can be avoided by using rays that either have the same origin or

the same direction signs, as those always have the same front-to-back traversal

order. City Viewer uses rays that have the same direction signs, as those can

be handled less costly and fit nicely to shadow rays.

12in the actual implementation sometimes less than four rays may be in a ray quad

66

6.3 Performance improvements

Implementation caveats

Although most parts of the traversal and intersection code can be directly converted

to SIMD code, some issues have to be taken care of. First of, branching should be

avoided because of the deep SSE pipelines. Every branch can cause a serious stall.

Therefore branching should be replaced by conditional moves, although this may lead

to executing more code than when using a branch.

When traversing the kd tree, some rays may intersect the split plane while others do

not. Still the same operations will be applied to each of the rays, which makes it

necessary to deactivate the rays not intersecting the node. Wald suggests to do this

by setting the ray segments of the near side to [tmin,min (d, tfar)] and the segments of

the far side to [max (d, tnear) , tfar]. This avoids that the segments of non-intersecting

rays get longer than before. By above min/max operations, rays that are invalid for

the current node have negative segment length, which allows to use SSE instructions

to generate a bit mask. This bit mask can then mask out invalid rays with no need

for conditionals.

67

Chapter 6 Ray tracing

68

Chapter 7

Application design

Development of an application is subject to many pitfalls. The later these become

known in the development process, the harder it is to take care of them. Considering

this, it is important to design the application carefully before doing any implemen-

tation work. This chapter gives some insight into the general design of City Viewer

along with measurements of application performance depending on the shadow tech-

nique being employed.

7.1 Packages

Reusability of code has been perceived as important while developing City Viewer .

Parts of the code will probably be reused when implementing similar applications

like a CityGML editor. Therefore CityGML code should be completely separated

from actual viewer code. Additionally a DirectX 10 application framework shall ease

development of future applications. Figure 7.1 shows all important packages used for

City Viewer .

The implementation of the City Viewer application consists of the following component

packages:

Console Provides a console interface for debugging purposes

CityGML Handles interpretation of the CityGML XML files. XML parsing is done

using libxml.

libxml2 A XML parser library available under the MIT license.

69

Chapter 7 Application design

libxml2

CityViewer
Console

Application Framework DirectX and DXUT

CityGML Visualization Tools

Figure 7.1: Package overview of the City Viewer application

Application framework Provides a basic framework for DirectX applications, based

on the D3DX library. This includes dialog and document/view support along

with helper classes for several Direct3D 10 interfaces.

Visualization Tools Provides a math library for matrices and vectors along with sev-

eral other classes like hyperrectangles, KD trees and triangle mesh splitting.

City Viewer This component is responsible for user input and displaying the GML

file using Direct3D 10.

7.2 Console

CConsole

+operator <<(str: string&): CConsole&
+ReadConsoleAsync(pConsoleListener: CConsoleListener*)

CConsoleListener

+OnReadConsole(commandLine: wstring&)

CWinConsole

Figure 7.2: Console package

This package provides access to a console system. Although consoles aren’t anymore

a good choice for user interaction, they can still provide valuable debug information

for development.

70

7.3 Application framework

The abstract CConsole interface is shared by all implementations. Additionally to

screen output, CConsole implementations also support writing to a log file. Currently

there is only a Microsoft Windows console implementation which uses the Win32

API for direct console access. Other possible implementations are graphical consoles

(using DirectX, OpenGL or window systems) or using STL for accessing the standard

input and output streams. The package also offers macros for quick display of color

coded error, warning and debug messages and is therefore used by almost all other

packages.

7.3 Application framework

When developing applications of a specific domain, often the very same work has to

be done for every application. Thus development speed can be increased easily by

providing a framework that performs these tedious tasks automatically. Some of the

more general tasks when developing applications are:

Event handling Provide a general event handling that forwards messages to the ap-

propriate handlers (like views or buttons)

GUI Creating a main window and providing dialogs and controls

Document-View pattern Providing base classes for the Document-View architectural

pattern (or Model-View-Controller pattern)

Command model Base classes for commands to allow undo/redo functionality

Domain specific support Functionality for common tasks in the given application

domain

In the context of DirectX graphics applications, domain specific support can be cate-

gorized as follows:

Encapsulation Encapsulate certain DirectX interfaces to ease usage

Resource loading Provide easy loading of resources like effects or textures

Rendering Extend the Document-View model by making sure views support several

rendering passes

71

Chapter 7 Application design

CBuffer

+operator ID3D10Buffer*()
+operator ID3D10ShaderResourceView*()
+operator ID3D10RenderTargetView*()

CDXUTApplication

+GetInstance()
+GetD3D10Device()
+Run()
+OnReadConsole()
+GetActiveView()

CDocument

+UpdateViews()
+Undo()
+Redo()

1
*

CView

+OnUpdate()
+OnMessage()
+OnD3D10Render()
#OnRenderPasses()

1 *

*

1

CEffectPool

+AsEffect(): ID3D10Effect*

CEffect

+GetEffect(): ID3D10Effect*

CTexturePool

+AddTexture()
+DeleteTexture()
+IsLoaded()
+Flush()

1

CTexture

+Download(): HRESULT
+operator ID3D10RenderTargetView*()
+operator ID3D10ShaderResourceView*()
+operator ID3D10Texture2D*()
+operator ID3D10Texture3D*()

*

Figure 7.3: Application framework for DirectX 10 applications

7.3.1 GUI

Although using a more general GUI library has been considered, the GUI is based on

the DirectX Utility Library (DXUT) shipped with the DirectX SDK, which already

offers a quite complete implementation of dialogs and basic controls. DXUT displays

controls directly using the DirectX API, instead of relying on windows controls.

The application framework provides extensions to the dialog model of DXUT. It adds

72

7.3 Application framework

basic docking functionality for dialogs, so that the user can attach dialogs to each side

of the screen. Together with minimizing dialogs (support included in DXUT), this

allows cleaning up the screen for complex applications.

7.3.2 Textures and effects

3D graphics applications need access to textures and shaders. Therefore the appli-

cation framework offers convenience classes for textures and effects. That way some

code redundancy can be avoided, as quite often the same initialization work has to be

done.

Pooling

Shaders and texture are needed at several locations of a complex application. In order

to save memory, no file texture should be loaded twice. Also, compiling complex

shaders can be quite time consuming, especially if they use loop unrolling, meaning

that compiling a shader twice should be avoided. For these reasons a central pool is

offered to allow easy access to textures and shaders.

Textures

The framework offers several texture classed (all derived by CTexture) for the different

texture types, e.g. CTexture2D. Each of these classes supports creating textures for

different purposes like render targets or depth stencil buffers. The ease of use comes

with the loss of flexibility. However, the framework also supports using DirectX 10

interfaces directly with full flexibility, therefore this is a small price to pay.

The texture pool references textures just by filename. If a component requests a

texture, the texture pool checks if the texture has been loaded. If so, the texture is

directly returned, otherwise the pool tries to load the texture and return it. A possible

extension is preloading the textures in another thread and only blocking if the texture

is actually needed for display.

73

Chapter 7 Application design

Effects

Effect files and subsequently shaders are treated differently to textures. In DirectX

10, shaders are usually accessed by effect files, which can contain several techniques

consisting of several passes. Each pass can use completely different vertex, geometry

and pixel shaders along with rendering states.

Effects can have child effects. The parent effects are called effect pools. This aims

at limiting state changes and reusing shader constants, which can be shared across

different effects. The framework supports this by introducing an effect pool class

additionally to normal effects. The CEffectPool may have an associated DirectX effect

pool, but this is not mandatory.

Effects and effect pools are loaded when initializing the application. The developer

specifies a XML file that contains the filenames of all effect pools and effects. This

XML file also offers some abstraction from the actual effect code by providing variable

name translation. It also supports “#define” directives if needed for the actual effect

shader code.

7.3.3 Document-view model

The framework provides support for a document-view architecture pattern. Although

a model-view-controller pattern could be used, too, for graphics applications view and

controller often can be merged into a single class.

CDocument

+UpdateViews()
+Undo()
+Redo()

CView

+OnUpdate()
+OnMessage()
+OnD3D10Render()
#OnRenderPasses()

1 *
CPassRenderer

+Render()
+SetMatrices()

0..1 0..*

Figure 7.4: Document-View architecture

In this framework a view usually renders a given document using DirectX. However,

complex rendering usually consists of several passes. For example, a shadow map

can be generated and applied to a scene, which results in two passes. Also, those

passes may be required for different types of views. This lead to the introduction of

CPassRenderer, which does the actual rendering of a given scene. This concept is

illustrated in figure 7.4.

74

7.4 CityGML

7.4 CityGML

As has been shown in chapter 2, CityGML is a XML language. It describes a class hi-

erarchy, which can be represented as C++ class hierarchy. The actual implementation

directly translates the given hierarchy to a C++ class hierarchy. This eases following

the (City)GML standard and allows for updating the library to newer revisions of

the standard. An excerpt of this C++ class hierarchy including embedding classes is

shown in 7.5.

CCityGML

CNode

CElement

CAbstractFeature

CAbstractFeatureCollectionCCityModel

CFactory

#m_ElementIDs: std::map< std::wstring, CElement* >

+Create(id: wchar_t, varOwner: CElement*, referencePointer: T): void
+Create(state: CSAXState): T
+Create(state: CSAXState, pParent: CElement*): T
+GetInstance(): CFactory

0..*

1..*

<<friend>>

<<instantiate>>

CSAXParser

libxml2

CSAXListener

Figure 7.5: Excerpt of CityGML parser design

7.4.1 Graph construction

CityGML documents support linking of elements to each other. This is used exten-

sively in the appearance model, as can be seen in figure 7.6. CityGML documents are

thus no trees but graphs. As a consequence, object instances can be linked by several

other objects. As C++ does not have garbage collection, a method must be found

to ensure that objects are only destroyed when all their referencing objects have been

destroyed. This is done similarly to the Component Object Model (COM) by adding

AddRef() and Release() methods to CNode (which is the base class for all XML nodes).

When constructing an element, its reference count is set to one. Every time an object

75

Chapter 7 Application design

reference is stored, AddRef() must be called for this object, increasing the reference

count by one. Once the reference is not needed anymore, Release() must be called to

decrease the reference count. If the reference count reaches zero, the object is finally

destroyed.

Building

BoundarySurface

MultiSurface

Polygon
+surface

Appearance

X3DMaterial

+surface

GeoreferencedTexture

+surface

Figure 7.6: Object diagram of typical appearance model

Linking in GML is done using IDs. Each object that can be linked does have an ID. In

order to support linking, a central factory class is introduced. This class is responsible

for creating any C++ XML object. If the object does have an ID, the object and

ID is stored in a map. The same factory class also provides a method to retrieve an

object by providing an ID. The latter is complicated by the issue of SAX parsing,

which is explained later. During SAX parsing, the objects are created linearly in the

same order as they appear in the file. However, as an object in a XML file may be

linked to before instancing it, those links cannot be directly established. If that is the

case, the factory provides a callback mechanism to update the linking object once the

linked object has been created.

7.4.2 XML parsing

Parsing the XML files is done using libxml2, which provides two different interfaces

for reading:

DOM The document object model is the easiest way to access XML data. The given

XML file is represented by a tree which can be traversed. This tree is fully in

memory.

SAX The Simple API for XML uses another approach for accessing the XML data.

Instead of parsing the whole file and providing access to the data afterward,

SAX parses single elements of the file and directly sends them to the application,

which is responsible for handling or storing this data in an appropriate way.

76

7.4 CityGML

Both methods were considered for City Viewer . While the DOM approach was easy

to implement, it was causing large amounts of memory to be wasted, as there are

essentially two trees at once in memory: the XML parser tree and the City Viewer

specific CityGML tree. Also the XML tree stores all data as string, and depending

on string pool support of the parser, even the type of each node as string. Loading a

XML file resulted in a memory usage larger than the stored file, as each node holds

information about parent and other tree information along with the actual data. This

has been considered a waste of memory, therefore the DOM approach has been skipped

and SAX parsing was employed.

SAX parsing with libxml2

However, SAX parsing is slightly more complicated. The library libxml2 offers SAX

parsing by callback functions. The class CSAXParser provides these callback functions

and forwards them to the current C++ object being parsed. The latter is implemented

using a listener model. The listeners are stored on a stack, as after the object has been

finished, the old listener must receive notifications again.

Once a new XML element is parsed, the current listener is notified and receives in-

formation about the element. The listener can then either skip the element1, create

a new C++ object representing the element2 or use a state machine for handling the

element. The state machine is often used for handling elements that further specify

their included element. An example for this in CityGML are <lodXGeometry> ele-

ments (with X being a number), which specify the level of detail of their child element,

which in this case must be a subclass of AbstractGeometry. The state machine avoids

having to create own C++ classes for elements like <lodXGeometry>, which contain

no useful data themselves, but just add meaning to their embedded children.

Figure 7.7 shows a sequence diagram of a typical SAX parsing operation. Initially

the current listener is Building. An element <boundedBy> is parsed, which signals

that a element derived by BoundarySurface will follow. This information is stored as

current state of Building. Building now receives another OnStartElement() message

with the type of boundary surface. It uses this information to create the appropriate

WallSurface. The WallSurface registers itself as now listener and receives all child

elements of the <WallSurface> element. Once all child elements have been parsed,

the SAX parser removes WallSurface from the listener stack and notifies Building that

the WallSurface has finished.

1including all children
2this causes the new object to be the new listener

77

Chapter 7 Application design

Figure 7.7: SAX parsing sequence diagram

7.5 City Viewer

The actual main application package is called City Viewer. It is based on the applica-

tion framework and uses the CityGML parser package for reading CityGML files. The

main package is responsible for integrating the different algorithms explained in this

thesis along with implementing the actual display algorithms. A general overview of

the package is given in figure 7.8.

The application’s entry point is given by CCityV iewer, which is responsible for things

like for creating the application window, initializing Direct3D and the console system,

loading effect files or creating the user dialogs. The user dialogs and controls are

provided by the application framework, which bases on DXUT.

The document-view architecture is implemented by CScene and CSceneV iew (in-

cluding child classes), which are explained later. Although the framework supports

multiple documents, City Viewer ’s architecture is limited to one scene for performance

reasons. However, support for composing a scene using several sources (not limited to

78

7.5 City Viewer

Application Framework

CCityViewer

CDXUTApplication

CScene

11

CSceneView

1 *

CDocument CView CPassRenderer

CSceneRenderer
1

*

Figure 7.8: Excerpt of the City Viewer class model

CityGML) can easily be added.

7.5.1 Scene

The actual scene data is stored in CScene, which is derived from the application

framework’s CDocument. The scene is storing a CEntity collection. Each entity is

representing a scene object, like a house or river. An entity may consist of several

CGeometry objects. This concept is shown in figure 7.9.

CScene CEntity
1 *

CCityGMLEntity

CGeometry

+Split()
1 *

CTriangulatedGeometry

CTriangulatedGMLGeometry

+Split()
+Combine()

<<create>>

CityGML

CCityModel 1

CAbstractCityObject

1

1 1
* *

CAbstractSurface

*

*

<<derive>>

Visualization Tools

CKDTree

1

CKDNode
1

1..*

1

<<derive>>

CSceneKDNodeData
11

Figure 7.9: City Viewer’s scene model

79

Chapter 7 Application design

The CityGML file is loaded using the CityGML package. Afterward, a collection

of CCityGMLEntity objects is created, each one based on one CCityModel child.

The CCityGMLEntity object then requests all (leaf) GML surfaces attached to the

entity and builds one CTriangulatedGMLGeometry object for each surface. Dur-

ing this process the GML surfaces are triangulated and the results stored in each

geometry object. City Viewer optionally supports to attach default textures and ma-

terials to the surfaces, based on the type of feature owning them, which is the first

CAbstractFeature in the path from the surface to scene graph root.

At this stage, the very top and bottom of a city object are referenced in the CityGML

scene graph3. This results in quite many CTriangulatedGMLGeometry instances,

each probably only including very few triangles. As City Viewer is no geometry editor

and picking shall only be done for CityGML features (not single geometries), this

doesn’t make sense. Therefore, CTriangulatedGMLGeometry objects are combined

if they share the same theme and are owned by the same CAbstractFeature. A

reference to the owning CAbstractFeature is kept. That way, algorithms can associate

all CityGML features in the scene graph with their corresponding scene entities and

geometries.

After combining geometries, vertices are shared. Sharing performance is increased by

sorting the vertices along a coordinate axis. Changing the vertex order may decrease

rendering performance, as described in chapter 4.4. Due to the way of converting

each geometry object to a draw batch, which is rendered at once, this usually can be

neglected. Additionally, the vertex buffer could be optimized before uploading to the

GPU to avoid extreme cases. After sharing, vertex normals can be calculated4.

Once all entities including their geometries have been built, the geometries are in-

serted into a kd-tree as specified in chapter 3.2. This kd-tree is then used for creating

the draw batches as explained in chapter 4.4.1. Each kd-tree node may be asso-

ciated with an application specific data object. In this case, it is associated with

CSceneKDNodeData, which holds information like hyperrectangles or information

needed by occlusion culling. This has been used to distinguish between optional data

and data characteristic for each kd-tree. A side effect is much better cache usage when

simply traversing the tree without accessing optional data, as optional data needs much

more memory than pure nodes. This has been important for the ray tracer5.

A kd-tree used for occlusion culling should be much less detailed than a kd-tree used

3Ignoring rings and points, which are even deeper in the scene graph
4Objects with materials that need face normals are treated when creating the buffer collec-

tions for the GPU
5Initially, the ray tracer used the original kd-tree. It now uses a special flat kd-tree optimized

for cache compliance

80

7.5 City Viewer

for raytracing. This is due to the latency of occlusion culling and the pure processing

power of the GPU. To avoid building two trees, all leafs and all nodes that exceed a

certain depth are simply marked as leafs for GPU rendering. Finally, all draw batches

are created at these nodes and the resulting buffer collections are uploaded.

Temporarily, this process leads to redundantly stored geometry. Geometry is stored

with different compression methods at several locations:

CityGML The CityGML class hierarchy stores plain vertex positions and optionally

texture coordinates. Data is stored as uncompressed 64-bit floats

CityViewer Vertex positions, normals and texture coordinates along with indices are

stored. Vertex positions are shifted towards the scene center and stored as 32-

bit floats. Vertex sharing is performed. Optionally, an acceleration structure is

stored for each triangle to increase raytracing performance

Buffer collections All vertex and index data is stored compressed. The compressed

data is temporarily stored in main memory before uploading it to the GPU

This data layout can be problematic for large scenes, especially since the CityGML

scene graph itself has considerable memory cost even without the actual vertex data.

This is also true for the CityViewer layer when creating deep kd-trees, as each CGeometry

object adds overhead. Deep kd-trees decrease the triangle count of single CGeometry

objects while increasing the count of objects.

However, it is possible to decrease the memory load. First, the scene graph geometry

information of CityGML can be removed after constructing the scene. This leads to

either not supporting (geometry) editing functionality or at least to losing the original

geometry hierarchy when storing the scene to a GML file. Second, the acceleration

triangle structure can be avoided, resulting in reduced raytracing speed. Finally, after

uploading the geometry data to the GPU, no geometry data has to be stored in main

memory at all. However, this disables (CPU) raytracing and picking.

7.5.2 Views and renderers

City Viewer supports several different views. Each view is responsible for displaying

the scene a certain way to the user, while a renderer represents just one pass of doing

that. The view and renderer class hierarchy is shown in figure 7.10

81

Chapter 7 Application design

CDefaultView

CRaytracedView

CKDView CDefaultRenderer

1

CIDRenderer

CLinearRenderer

1

1

CCascadedShadowMap

+CalcUniform()
+CalcXPSM()

1

0..1

CSceneView CSceneRenderer
1 *

CShadowMapRenderer

CVarianceShadowMapRenderer

1

0..5

0..5

Figure 7.10: City Viewer’s view and renderer model

Renderers

There are several types of renderers. Basically two types of renderers can be distin-

guished: those using occlusion culling and those rendering batches linearly. All ren-

derers that make use of occlusion culling are derived by CDefaultRenderer, which

implements the algorithm described in chapter 4.6. The most important renderers

are:

CDefaultRenderer Implements the occlusion culling algorithm along with rendering

batches using their associated appearances. Supports back-to-front rendering of

transparent objects and applying a depth or variance shadow map. Also stores

a list of leaf nodes that passed occlusion culling

CIDRenderer Renders to a 8-bit integer RGBA texture and stores an unique primitive

ID in the first three components. The alpha channel is used for flagging shadow

and reflection raytracing information. Uses occlusion culling

CShadowMapRenderer and CVarianceShadowMapRenderer Renders a depth or vari-

ance shadow map. Ignores transparent objects and uses occlusion culling

CLinearRenderer Renders the draw batches of the given leaf nodes using their ap-

pearance. Also applies a prerendered screen-space shadow mask instead of a

82

7.5 City Viewer

shadow map

CCascadedShadowMap Although not directly a renderer, serves a similar purpose.

Encapsulates up to 5 depth or variance shadow maps as presented in chapter 5.5.

For each shadow map a separate renderer is allocated, which renders into one

texture of the texture array. Uses visibility information given by the occlusion

culling tests of the last frame’s camera renderer to further narrow down the

focus area of each shadow map6

Views

There are currently three different types of views:

CDefaultView Renders the scene using CDefaultRenderer. Before rendering the

scene on the screen, a cascaded shadow map can be generated by CCascaded-

ShadowMap.

CRaytracedView This view consists of several passes. First, the cascaded shadow

map is rendered as usual, forcing variance shadow maps7. Then, an ID renderer

is used to create an ID texture with shadow edge information. A ray tracer

is invoked to create the refined screen-space shadow texture. Finally the scene

is rendered to the screen using CLinearRenderer, which applies the refined

texture.

CKDView Simply renders the kd-tree including objects in wire frame mode

Both CDefaultV iew and CRaytracedV iew support screen-space Gauss filtering for

the shadows. This is done using a renderer similar to CIDRenderer, which just

outputs a shadow image in screen-space. The gauss filter is then applied to the shadow

image. Afterward, CLinearRenderer is used together with the smoothed shadow

image to render the scene.

Picking CDefaultV iew and all descendants support picking, which is simply im-

plemented by invoking the ray tracer. The pick returns a CGeometry instance, which

keeps a reference to the deepest CityGML CAbstractFeature. This feature is then

6With very low frame rates and while moving the camera rapidly, this may result in shadows
missing for scene parts coming into view. Usually this is not visible to the user as most
times it happens at areas far away

7The shadow maps are focused on the area visible last frame, which is given by the ID
renderer

83

Chapter 7 Application design

selected. By scrolling up and down with the mouse wheel, the user can select the

different CityGML parent features. Rendering is done by marking all draw batches

that contain some selected geometries. These draw batches are then broken up during

rendering to distinguish selected geometries from those that are not selected.

Information text about the currently selected object is shown on screen, centered on

the object. If the object is currently not visible in view frustum, the text is shown at

the screen side closest to the object.

7.6 Performance

Table 7.1 gives a short overview of the achieved frame rates depending on the shadow

map technique being employed. The frame rates just give a rough estimate of relative

performance, as each of the techniques is still subject to ongoing tuning. Especially

the raytracing approach can be tuned by optimizing the kd-tree and improving edge

detection. The latter can also be used as a trade-off between performance and qual-

ity.

No smoothing Gauss smoothing (σ = 20)
Depth shadow map 47.7 18.59
Hybrid 9.34 6.85
Variance shadow map 19.87 -

Table 7.1: Frame rates measured for different shadow variants. All measurements have
been taken at a screen resolution of 800 × 600 with 3 cascaded XPSM
shadow maps sized 1024 × 1024. Rendering has been done on a Pentium
Core 2 Duo 2.2GHz with 2GB RAM using a NVIDIA GeForce 8700M GT
(512 MB). The variance shadow map is smoothed by a 5 × 5 Gauss kernel
when sampling

Figures 7.11 to 7.15 show parts of the scenes as rendered for table 7.1. They show a

CityGML test dataset that has been created based on the city of Ettenheim, which is

available on the CityGML website.

84

7.6 Performance

Figure 7.11: Shadow map without
smoothing

Figure 7.12: Shadow map with strong
smoothing

Figure 7.13: Raytracing hybrid with-
out smoothing

Figure 7.14: Raytracing hybrid with
strong smoothing

Figure 7.15: Variance shadow map

85

Chapter 7 Application design

86

Chapter 8

Conclusion and prospects

This thesis has presented an extensible city model viewer with respect to high-quality

shadows. CityGML has been chosen as media type due to good documentation and

promising prospects. CityGML files are a XML language and therefore can be parsed

by any XML parser. To avoid memory issues caused by DOM parsers, an SAX ap-

proach has been taken. The CityGML class hierarchy has been directly translated

to a C++ class library, which is used by the main application for loading CityGML

files.

The CityGML hierarchy is transferred into a flat structure with triangulated surfaces.

This structure is then inserted into a kd-tree using a surface area heuristic. This

heuristic has proved to result in very efficient kd-trees and can easily be adapted to

support time as dimension. However, construction of the kd-tree using the surface

area heuristic is far more expensive than simpler construction proceedings.

Rendering performance can be vastly improved by using draw batches to avoid state

changes and limit draw calls. Additionally, the kd-tree lends itself well for hierarchical

occlusion culling. This improves performance significantly, as CPU stalls are avoided

by hiding the latency.

Shadows have been considered an important part of the thesis, as they are necessary

for creating realistic images. Several real-time shadow techniques have been compared.

For the purposes of this thesis, shadow maps have been chosen for providing the best

compromise of speed and quality. It has been shown that shadow map aliasing can

be reduced using several techniques. While perspective shadow map approaches offer

decreased aliasing for almost no performance cost, some of them are subject to several

implementation caveats. Cascaded shadow maps are more expensive due to rendering

the scene several times, but they are easier to implement and offer better quality.

However, none of these techniques is capable to fully hide aliasing artifacts. The

87

Chapter 8 Conclusion and prospects

artifacts can be further reduced by using variance shadow maps or screen-space Gauss

smoothing.

To produce (almost) perfect shadows, shadow volumes or raytracing can be used.

Shadow volumes are well known, but have not been considered for this thesis, as

they don’t scale well with large (and detailed) scenes. Instead, an hybrid approach of

shadow maps and raytracing has been examined. It has been shown that it is possible

to refine shadow edges using raytracing interactively. Although this is still quite CPU

intensive, raytracing scales very well with increasing parallelism. As the processor core

count is expected to rise further, this method may become interesting for applications

with high performance requirements, for example games.

The following sections conclude this thesis with proposals for further research to im-

prove the shown techniques.

8.1 Caching

As creating high-quality kd-trees is expensive, they can be cached on the hard disk

when initially loading a city. However, simply loading the CityGML file to memory

can take some time due to large file sizes. This would still be necessary for querying

the checksum to make sure the kd-tree is up-to-date.

Another option is to completely avoid loading the CityGML file after the cache file has

been created. The cache file doesn’t have to store all data available in the CityGML

file. Information can be accessed by storing file offsets into the original CityGML file

and load entity data stored at that location. To support elements linked by that entity,

for each element ID an offset should be stored in a global list.

8.2 Tiling

Although the viewer has been designed to deal with quite large scenes, limits are

reached easily. High-detailed cities of several square kilometers quickly reach memory

limits of both graphics card and main memory. This can be solved by tiling a city

into several smaller parts that are loaded on demand. Any solution has to deal with

the difficulty of main memory limits. This section proposes an idea for creating the

tiles.

88

8.3 Tuning

The SAX parser is invoked on the CityGML file1. A CityGML file includes the city’s

extent at the beginning of the file. The number of tiles can then be calculated heuris-

tically by file size and city extent. The entities traversed are associated to the appro-

priate tiles and a kd-tree is built for each tile. As only a limited amount of tiles can

be stored in memory (as the algorithm is assumed to be running on the same machine

as the viewer), the tiles may have to be swapped to hard disk. This is expensive and

complicated to implement.

An easier approach is to use multiple passes. Each pass is responsible for a certain

amount of tiles2. An entity that doesn’t belong to the currently active tiles is ignored.

Otherwise, the entity is parsed as usual and added to the current tile. Once all entities

of the current pass have been parsed, the kd-tree is built and stored on hard disk. Then,

the SAX parser is invoked again and the next tiles are handled. This is continued until

all tiles have been created.

The actual viewer then has to load the cached tiles instead of the CityGML file. It must

be made sure that preloading tiles when moving the camera is done smoothly. This

can be done using several techniques, like considering the current camera movement.

8.3 Tuning

Generally, large parts of the thesis can be tuned to a large degree. This ranges from kd-

tree building constants to choosing the best count and resolution of cascaded shadow

maps. Shadows in general offer a wide range of options, from using raytracing to Gauss

smoothing or variance shadow maps. Each of those techniques has a set of options to

tune, with some of them influencing other parts of the shadow process.

8.4 Functionality

Current user functionality of City Viewer includes viewing a scene, moving through

it and being able to pick CityGML elements. When picking an element, the type of

element along with any string attributes is shown on the screen. This functionality

can be extended to include any information available for the feature. Most of this data

is currently ignored when loading the scene. Adding parsing and display code for that

1It could also be invoked on a number of CityGML files
2It’s not necessary to limit each pass to only one tile, as tiles must be small enough to store

some of them at once on the graphics card when rendering

89

Chapter 8 Conclusion and prospects

kind of information is straightforward.

It may also be interesting to add editing functionality to the viewer. While providing

geometry editing seems to be out of scope, it makes sense to add feature editing,

including transforming features, changing feature data (especially time information)

and adding or removing features. The implementation would have to deal with kd-

tree issues, as fully rebuilding the kd-tree each time an object is moved is prohibitive.

However, moved objects don’t have to be stored in the kd-tree, or they may simple be

inserted into the tree without changing the tree structure3.

Adding animated data would be another step to higher realism. Depending on the

type of animation, the animated features are subject to the same kd-tree issues faced

by edited features. Some solutions to this have been proposed in chapter 3.2.

8.5 Ray tracing

The current implementation splits polygons that intersect a kd-tree node. This is

ideal for the occlusion culling algorithm employed. However, polygon count increases

drastically the further subdivision continues. Occlusion culling doesn’t need deep

subdivision to work well, but raytracing performance is very much dependent on the

depth of the kd-tree.

To make deep kd-trees more efficient, triangles should not be split anymore after

reaching the rendering leaf layer. Instead, references to the polygons should be kept.

The ray tracer can use a technique called mailboxing to avoid intersecting a primitive

several times [WBWS01]. Each ray (or ray quad) is assigned an unique ID, and each

primitive stores the ID of the last intersected ray. An intersection can be avoided if

the IDs match, as the results would be the same anyway.

Another idea is to use GPU ray tracing to refine shadows, which is currently investi-

gated by the chair for Computer Graphics and Visualization at the Munich University

of Technology. An advantage of that approach is given by the fact that CPU ray trac-

ing of shadows leads to full usage of the CPU, although it can be done interactively

by masking out parts of the screen. However, real-time applications often need to do

other work than just visualization. As an example, games need to do expensive cal-

culations for collision detection and artificial intelligence. This would be significantly

more difficult to implement efficiently. A GPU ray tracer instead allows to do other

calculations on the CPU. Especially for real-time applications like games, GPU ray

3This limits kd-tree efficiency, of course

90

8.5 Ray tracing

tracing of shadows therefore may be much more interesting.

Ray tracing has a serious advantage: it behaves logarithmically in regard to scene

complexity, while conventional rasterizing methods behave linearly. Combined with

the fact that scenes are becoming more and more complex, ray tracing seems to be

the “better” algorithm in a few years. This thesis has shown that it already can be

used today for high-quality shadows in hybrid approaches.

91

Bibliography

[Ben75] Jon Louis Bentley. Multidimensional binary search trees used for asso-

ciative searching. Commun. ACM, 18(9):509–517, 1975.

[BPSM+06] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and

Frano̧çois Yergeau (editors). Extensible Markup Language (XML) 1.0.

http://www.w3.org/TR/2006/REC-xml-20060816, 2006.

[BS02] William Bilodeau and Michael Songy. Method for rendering shadows

using a shadow volume and a stencil buffer, 2002.

[BWPP04] Jiŕı Bittner, Michael Wimmer, Harald Piringer, and Werner Purgathofer.

Coherent Hierarchical Culling: Hardware occlusion queries made useful.

Computer Graphics Forum, 23(3):615–624, September 2004.

[CDL+07] Simon Cox, Paul Daisey, Ron Lake, Clemens Portele, and Arliss White-

side (editors). OpenGIS® Geography Markup Language (GML) imple-

mentation specification. http://portal.opengeospatial.org/files/

?artifact_id=4700, 2007.

[Cla76] James H. Clark. Hierarchical geometric models for visible-surface algo-

rithms. SIGGRAPH Comput. Graph., 10(2):267–267, 1976.

[Dim07] Rouslan Dimitrov. Cascaded shadow maps. http://developer.

download.nvidia.com/SDK/10/opengl/src/cascaded_shadow_maps/

doc/cascaded_shadow_maps.pdf, 2007.

[DL06] William Donnelly and Andrew Lauritzen. Variance shadow maps. http:

//doi.acm.org/10.1145/1111411.1111440, 2006.

[FvDFH96a] James D. Foley, Andries van Dam, Steven K. Feiner, and John F.

Hughes. Computer graphics (2nd ed. in C): principles and practice.

Addison-Wesley Systems Programming Series. Addison-Wesley Long-

man Publishing Co., Inc., 1996.

v

http://www.w3.org/TR/2006/REC-xml-20060816
http://portal.opengeospatial.org/files/?artifact_id=4700
http://portal.opengeospatial.org/files/?artifact_id=4700
http://developer.download.nvidia.com/SDK/10/opengl/src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf
http://developer.download.nvidia.com/SDK/10/opengl/src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf
http://developer.download.nvidia.com/SDK/10/opengl/src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf
http://doi.acm.org/10.1145/1111411.1111440
http://doi.acm.org/10.1145/1111411.1111440

Bibliography

[FvDFH96b] James D. Foley, Andries van Dam, Steven K. Feiner, and John F.

Hughes. Illumination and shading. In Computer graphics (2nd ed. in

C): principles and practice, pages 721–814. Addison-Wesley Longman

Publishing Co., Inc., 1996.

[FvDFH96c] James D. Foley, Andries van Dam, Steven K. Feiner, and John F.

Hughes. List-priority algorithms. In Computer graphics (2nd ed. in

C): principles and practice, pages 672–680. Addison-Wesley Longman

Publishing Co., Inc., 1996.

[FvDFH96d] James D. Foley, Andries van Dam, Steven K. Feiner, and John F.

Hughes. Spatial-partitioning representations. In Computer graphics (2nd

ed. in C): principles and practice, pages 548–557. Addison-Wesley Long-

man Publishing Co., Inc., 1996.

[FvDFH96e] James D. Foley, Andries van Dam, Steven K. Feiner, and John F.

Hughes. Visibe-surface ray tracing. In Computer graphics (2nd ed. in

C): principles and practice, pages 701–714. Addison-Wesley Longman

Publishing Co., Inc., 1996.

[GKC07] Gerhard Gröger, Thomas H. Kolbe, and Angela Czerwinski. Candidate

OpenGIS® CityGML implementation specification. http://portal.

opengeospatial.org/files/?artifact_id=22120, 2007.

[GS87] Jeffrey Goldsmith and John Salmon. Automatic creation of object hier-

archies for ray tracing. IEEE Comput. Graph. Appl., 7(5):14–20, May

1987.

[Gus07] Vladislav Gusev. Extended Perspective Shadow Maps (XPSM). http:

//www.xpsm.org, 2007.

[Hav00] Vlastimil Havran. Heuristic Ray Shooting Algorithms. Ph.d. thesis,

Department of Computer Science and Engineering, Faculty of Electrical

Engineering, Czech Technical University in Prague, November 2000.

[HMS06] W. Hunt, W. R. Mark, and G. Stoll. Fast kd-tree construction with an

adaptive error-bounded heuristic. In IEEE Symposium on Interactive

Ray Tracing 2006), pages 81–88, 2006.

[KK86] Timothy L. Kay and James T. Kajiya. Ray tracing complex scenes. In

SIGGRAPH ’86: Proceedings of the 13th annual conference on Computer

vi

http://portal.opengeospatial.org/files/?artifact_id=22120
http://portal.opengeospatial.org/files/?artifact_id=22120
http://www.xpsm.org
http://www.xpsm.org

Bibliography

graphics and interactive techniques, pages 269–278, New York, NY, USA,

1986. ACM.

[Kli01] Alex Klimovitski. SSE/SSE2 toolbox solutions for real-life SIMD

problems. http://www.gamasutra.com/features/gdcarchive/2001E/

Alex_Klimovitski3.pdf, 2001.

[Kol07a] Thomas H. Kolbe. CityGML - 3d geospatial and semantic modelling

of urban structures. http://www.citygml.org/fileadmin/citygml/

docs/CityGML_ETS4_2007-03-21.pdf, 2007.

[Kol07b] Thomas H. Kolbe. What is CityGML? http://www.citygml.org/

1533/, 2007.

[Mam89] Abraham Mammen. Transparency and antialiasing algorithms imple-

mented with the virtual pixel maps technique. IEEE Comput. Graph.

Appl., 9(4):43–55, 1989.

[MB89] David J. MacDonald and Kellogg S. Booth. Heuristics for ray tracing

using space subdivision. In Proceedings of Graphics Interface 89, pages

152–163. Canadian Information Processing Society, June 1989.

[MB90] David J. MacDonald and Kellogg S. Booth. Heuristics for ray tracing

using space subdivision. Visual Computer, 6(3):153–166, 1990.

[MBW08] Oliver Mattausch, Jiŕı Bittner, and Michael Wimmer. CHC++: Coher-

ent Hierarchical Culling revisited. Computer Graphics Forum, 27(2):221–

230, April 2008.

[Mic08] Microsoft. DirectX SDK (March 2008) C++, 2008.

[PC02] European Parliament and European Council. Directive of environmen-

tal noise. http://ec.europa.eu/environment/noise/directive.htm,

2002.

[SBGS69] R. Schumacker, B. Brand, M. Gilliland, and W. Sharp. Study for apply-

ing computer-generated images to visual simulation. Technical Report

AFHRL-TR-69-14, U.S. Air Force Human Resources Lab., Air Force

Systems Command, Brooks AFB, TX, September 1969.

[Sch05] Daniel Scherzer. Shadow mapping of large environments. Master’s thesis,

vii

http://www.gamasutra.com/features/gdcarchive/2001E/Alex_Klimovitski3.pdf
http://www.gamasutra.com/features/gdcarchive/2001E/Alex_Klimovitski3.pdf
http://www.citygml.org/fileadmin/citygml/docs/CityGML_ETS4_2007-03-21.pdf
http://www.citygml.org/fileadmin/citygml/docs/CityGML_ETS4_2007-03-21.pdf
http://www.citygml.org/1533/
http://www.citygml.org/1533/
http://ec.europa.eu/environment/noise/directive.htm

Bibliography

Institute of Computer Graphics and Algorithms, Vienna University of

Technology, August 2005.

[SD02] Marc Stamminger and George Drettakis. Perspective shadow maps.

http://doi.acm.org/10.1145/566570.566616, 2002.

[Shi05] Peter Shirley. Fundamentals of Computer Graphics. B&T, second edi-

tion, 2005.

[Sub90] K. R. Subramanian. A Search Structure based on K-d Trees for Efficient

Ray Tracing. PhD thesis, The University of Texas at Austin, December

1990.

[Wal04] Ingo Wald. Realtime Ray Tracing and Interactive Global Illumina-

tion. PhD thesis, Computer Graphics Group, Saarland University, 2004.

Available at http://www.mpi-sb.mpg.de/∼wald/PhD/.

[WBWS01] Ingo Wald, Carsten Benthin, Markus Wagner, and Philipp Slusallek. In-

teractive rendering with coherent ray tracing. Computer Graphics Forum

(Proceedings of EUROGRAPHICS 2001, 20(3):153–164, 2001.

[WH06] Ingo Wald and Vlastimil Havran. On building fast kd-trees for ray trac-

ing, and on doing that in O(N log N). In IEEE Symposium on Interactive

Ray Tracing 2006), pages 61–69, 2006.

[WHG84] Hank Weghorst, Gary Hooper, and Donald P. Greenberg. Improved

computational methods for ray tracing. ACM Trans. Graph., 3(1):52–

69, 1984.

[WSP04] Michael Wimmer, Daniel Scherzer, and Werner Purgathofer. Light space

perspective shadow maps. In Alexander Keller and Henrik W. Jensen,

editors, Rendering Techniques 2004 (Proceedings Eurographics Sympo-

sium on Rendering), pages 143–151. Eurographics, Eurographics Asso-

ciation, June 2004.

viii

http://doi.acm.org/10.1145/566570.566616

	Introduction
	City models
	Google Earth
	CityGML
	Use cases

	Viewer requirements
	Functional requirements
	Performance requirements

	Platform
	Operating environment

	CityGML
	Introduction
	CityGML
	Themes
	Level of detail
	Building model
	Appearance model

	GML
	Geometry model
	Triangulation

	Efficient data structure
	Common acceleration structures
	Bounding volumes
	Bounding volume hierarchies
	Uniform spatial subdivision
	Octree
	Binary space-partitioning tree

	Kd-tree
	Construction algorithm
	Common split methods
	Surface area heuristic
	Time
	Splitting objects

	Rendering
	DirectX 10 introduction
	Resources and views
	Effects and shader model 4

	Buffer collections
	Appearances model
	Efficient rendering
	Draw batches
	Merging draw batches

	Rendering the scene graph
	Occlusion culling
	Compressing vertex buffers
	Position data
	Normal data
	Texture coordinate data

	Transparency

	Shadows
	Shadow maps
	Self-Shadowing
	Aliasing

	Variance shadow maps
	Idea
	Implementation
	Light bleeding

	Image based Gauss smoothing
	Gauss image filtering
	Using scene information
	Conclusion

	Perspective shadow mapping
	Perspective shadow maps
	Light space perspective shadow maps
	Extended perspective shadow maps

	Cascaded Shadow Maps
	Refining shadow maps using raytracing
	Finding shadow edges
	Applying the refined projected shadow texture

	Ray tracing
	General algorithm
	Fast ray-triangle intersection
	Projection method
	Precalculating the projection method
	Cache efficiency

	Performance improvements
	Space partitioning
	Multithreading
	Caching shadow casters
	SSE

	Application design
	Packages
	Console
	Application framework
	GUI
	Textures and effects
	Document-view model

	CityGML
	Graph construction
	XML parsing

	City Viewer
	Scene
	Views and renderers

	Performance

	Conclusion and prospects
	Caching
	Tiling
	Tuning
	Functionality
	Ray tracing

	References

